
NUMERICAL SIMULATIONS OF DEGENERATETRANSPORT PROBLEMSFLORIAN DE VUYST AND FRANCESCO SALVARANIAbstra
t. We 
onsider in this arti
le the monokineti
 linear Boltz-mann equation in two spa
e dimensions with degenerate 
ross se
tionand produ
e, by means of a �nite-volume method, numeri
al simulationsof the large-time asymptoti
s of the solution.The numeri
al 
omputations are performed in the 2Dx− 1Dv phasespa
e on Cartesian grids and deal with both 
ross se
tions satisfying thegeometri
al 
ondition and 
ross se
tions that do not satisfy it.The numeri
al simulations 
on�rm the theoreti
al results on the long-time behaviour of degenerate kineti
 equations for 
ross se
tions satisfy-ing the geometri
al 
ondition. Moreover, they suggest that, for generalnon-trivial degenerate 
ross se
tions whose support 
ontains a ball, thetheoreti
al upper bound of order t
−1/2 for the time de
ay rate (in L

2-sense) 
an a
tually be rea
hed.1. Introdu
tionThis paper aims to give some numeri
al experiments in order to 
larify anopen question 
on
erning the mathemati
al theory of the linear Boltzmannequation.The linear Boltzmann equation is a model, whose expli
it form will bepresented in the next se
tion, that des
ribes at the simplest possible levelthe dynami
s of an ensemble of parti
les (for example, neutrons or photons)at the mesos
opi
 s
ale, by taking into a

ount the e�e
ts of an host mediumon the parti
le population. The intera
tions between parti
les and mediumare represented by a non-negative fun
tion � the 
ross se
tion � whi
h takesinto a

ount all the absorption, emission or s
attering phenomena.The linear Boltzmann equation is widely used in rea
tor physi
s and radi-ation hydrodynami
s and many textbooks are devoted to explain the mainproperties of the equation (see, for example, [4, 10, 11℄).However, at the mathemati
al level, the linear Boltzmann equation is notyet 
ompletely understood, although many properties are already known anda wide quantity of papers prove the interest in the subje
t.In parti
ular, the long-time behaviour of the solution of the linear Boltz-mann equation is well known only when the 
ross se
tions are bounded frombelow by a stri
tly positive 
onstant: in su
h a situation the solution expo-nentially de
ays in time to the unique equilibrium state of the system [16℄and an expli
it upper bound on the spe
tral gap has been obtained, by meansof the hypo
oer
ivity method, by Mouhot and Neumann in [12℄.Date: February 6, 2014.Key words and phrases. Linear Boltzmann equation, Convergen
e to equilibrium, de-generate 
ross se
tions. 1



2 F. DE VUYST AND F. SALVARANIThe aforementioned results have, however, no obvious extension in the
ase of 
ross se
tions vanishing in a portion of the domain. Indeed, in theregions where the 
ross se
tion is zero nether absorption nor s
attering areallowed: the problem is lo
ally redu
ed to the free transport equation, whi
hdoes not admit any equilibrium state, unless the initial datum is an absolute
onstant.Su
h a transport problem is said to be degenerate, and the 
omplete 
har-a
terization of the 
onvergen
e to equilibrium is still an open problem, evenif partial answers have been re
ently provided.In parti
ular, Desvillettes and Salvarani studied a spe
ial situation, by
onsidering 
ross se
tions that vanish at a �nite number of points [6℄, andproved an (at least) polynomial speed of 
onvergen
e to equilibrium, withexpli
it rates.Subsequently, Bernard and Salvarani 
onsidered in [1℄ a situation whenthe 
ross se
tion vanishes on a set of non-zero measure and gave a 
oun-terexample on the exponential 
onvergen
e to equilibrium by showing thatthe L2 distan
e to equilibrium 
annot de
ay faster than t−1/2 in general.The same authors su

eeded, some time later, in 
hara
terizing the 
ondi-tion on the 
ross se
tions that allows an exponential time de
ay to the equi-librium state, by means of a non 
onstru
tive argument and hen
e withoutindi
ating any quantitative estimate of the spe
tral gap [2℄. Su
h 
onditionhas been 
alled the geometri
al 
ondition. Physi
ally, a 
ross se
tion satis�esthe geometri
al 
ondition if and only if there exists a positive 
onstant T0su
h that, for any point (x, v) of the phase spa
e, the 
hara
teristi
 
urve
t 7→ x + tv, t ≥ 0, interse
ts the support of the 
ross se
tion before thetime instant t = T0. In parti
ular, the geometri
al 
ondition ensures thenon-existen
e of in�nite 
hannels in whi
h the parti
les move freely.The analogous result, for unbounded velo
ity sets, has subsequently beenobtained by Han-Kwan and Léautaud in the presen
e of a for
e deriving froma potential [8℄.The quantitative estimate of the spe
tral gap is very hard to obtain in the
ase of degenerate problems. Up to now, the only result, whi
h allows toobtain an optimal 
onvergen
e rate for degenerate 
ross se
tions, has beenobtained in [3℄ for the two-velo
ity one-dimensional 
ari
ature of the linearBoltzmann equation, also known as the Goldstein-Taylor model [7, 15℄.It is therefore natural to investigate from a numeri
al point of view thelong-time behaviour of the degenerate linear Boltzmann equation.In parti
ular, in this arti
le we will quantify:(1) the spe
tral gap for a 
ross se
tion satisfying the geometri
al 
ondi-tion given in [2℄, and(2) the exponent of the polynomial 
onvergen
e rate for degenerate 
rossse
tions that do not satisfy the geometri
al 
ondition.The numeri
al method adopted in the arti
le, whose pre
ise des
ription isgiven in Se
tion 3, is based on a �nite-volume strategy in the phase spa
e.The 
hoi
e of the numeri
al algorithm is very deli
ate. Indeed, sin
e thetheoreti
al behaviour of the equation is partially unknown and the numeri
alsimulations should suggest a mathemati
al property of the equation, the



NUMERICAL SIMULATIONS OF DEGENERATE TRANSPORT PROBLEMS 3guarantee that the numeri
al pro
edure is adequate to the problem is ofparamount importan
e.In parti
ular, we need a pro
edure whi
h is exempted from numeri
aldi�usion e�e
ts in large time, sin
e we need to 
apture a long-time relaxationto equilibrium whi
h is not ne
essarily exponential.Other numeri
al strategies are, of 
ourse, possible, su
h as a parti
lemethod, in the same spirit as in [5℄ and [13℄. However, sin
e the evalua-tion of the 
onvergen
e in large-time requires the 
omputation of an integralin the phase spa
e, a huge number of numeri
al parti
les is requested in orderto have a reasonable a

ura
y and the 
omputation would be mu
h heavierin 
omparison with the �nite volume method adopted here.The stru
ture of the arti
le is the following. In the next se
tion we statethe problem and summarise the known features of the model. Then, inSe
tion 3 we des
ribe the numeri
al algorithm and, in Se
tion 4, we showand analyse our numeri
al simulations. Finally, in a short Appendix, we willgive some details about the a

ura
y of the quadrature rule.2. The state-of-the-art on the degenerate linear BoltzmannequationLet f := f(t, x, v) be the solution of the linear Boltzmann equation withisotropi
 s
attering in a periodi
 box, that is(2.1) 









∂f

∂t
+ v · ∇xf = σ(x) (f̄ − f), (t, x, v) ∈ R+ × T

d × V

f(0, x, v) = f0(x, v) (x, v) ∈ T
d × V,where T

d := R
d/Zd, (d ∈ N, d ≥ 2). The unknown f represents the densityof point parti
les (usually neutrons or photons) whi
h at time t ∈ R

+ andpoint x ∈ T
d move at speed v ∈ V .Here V 
an denote either the unit sphere in R

d (when dealing with amonokineti
 gas) or the spheri
al shell individuated by the two radii 0 <
vm < vM : that is V = S

d−1 or V = {v ∈ R
d : vm ≤ |v| ≤ vM}.Moreover,

f̄(t, x) =
1

|V |

∫

V
f(t, x, v) dv,where |V | is the total measure of V .In what 
on
erns the initial 
onditions, we assume that f0 ∈ L∞(Td ×V )and that f0 ≥ 0 for a.e. (x, v) ∈ T

d × V .The nonnegative fun
tion σ(x) designates the 
ross se
tion. We will al-ways suppose that(1) σ ∈ L∞(Td) and σ(x) ≥ 0 for a.e. x ∈ T
d;(2) ‖σ‖L1(Td) > 0.It is easy to prove that 
onstants are steady solutions of Equation (2.1)and that

f∞ =
1

|V |

∫

Td×V
f0(x, v) dxdvis the unique 
onstant solution with the same total mass (i.e. parti
le num-ber) as the initial data.



4 F. DE VUYST AND F. SALVARANIIn what follows, we will often use a spe
ial family of 
ross se
tions, whi
hare well suitable when studying degenerate 
ross se
tion. For this reason,for all r ∈ (0, 1/2) we introdu
e the periodi
 open set
Zr = {x ∈ R

d : dist(x,Zd) > r}together with the asso
iated fundamental domain Yr = Zr/Z
d.In [1℄ the exponential 
onvergen
e in time to equilibrium � for general
ross se
tions satisfying the previous assumptions � has been ex
luded, asstated in the following theorem:Theorem 2.1. (Bernard, Salvarani). Let V = S

d−1. For all r ∈ (0, 1/2),there exists an initial 
ondition f0 ∈ L∞(Td × V ) satisfying f0(x, v) ≥ 0for a.e. (x, v) ∈ T
d × V and su
h that, for ea
h 
ross se
tion σ ∈ L∞(Td)satisfying σ(x) ≥ 0 for a.e. x ∈ T

d and σ(x) = 0 for a.e. x ∈ Yr, thesolution f of the Cau
hy problem (2.1) satis�es
E(t) := ‖f − f∞‖L2(Td×V ) ≥

C√
tfor ea
h t > r1−d, where C is a positive 
onstant.However, there exists a 
lass of 
ross se
tions that have a ni
er behaviourin what 
on
erns the relaxation to equilibrium.The properties satis�ed by σ that lead to an exponential 
onvergen
e ratein time to the stationary solution have been individuated by Bernard andSalvarani in [2℄.De�nition 2.2. The 
ross se
tion σ ≡ σ(x) is said to verify the geometri
al
ondition if and only if there exist T0 and C > 0 su
h that(2.2) ∫ T0

0
σ (φx,v(s)) ds ≥ C a.e. in (x, v) ∈ T

d × V,where φx,v designates the linear �ow starting at x ∈ T
d in the dire
tion

−v ∈ V :
φx,v : t 7→ x− tv.The main result of [2℄ is the proof that the exponential 
onvergen
e is adire
t 
onsequen
e of the geometri
al 
ondition:Theorem 2.3. (Bernard, Salvarani). Let σ ∈ L∞

(

T
d
) be a non-negative
ross se
tion satisfying the geometri
al 
ondition (2.2). Then there exist two
onstants M > 0 and α > 0 su
h that the solution f of the Cau
hy problem

(2.1) satis�es the inequality(2.3) ∥

∥

∥

∥

f −
∫

Td×V
f0 (x, v) dxdv

∥

∥

∥

∥

L1(Td×V )
≤ Me−αt

∥

∥f0
∥

∥

L1(Td×V )for all t ∈ R+. Conversely, if the solution of the Cau
hy problem (2.1)
onverges uniformly in L1 to its equilibrium state at an exponential rate (i.e.satis�es (2.3)), then σ must satisfy the geometri
al 
ondition (2.2).



NUMERICAL SIMULATIONS OF DEGENERATE TRANSPORT PROBLEMS 53. The numeri
al dis
retizationIn what follows, we will restri
t ourselves to the 2D (in spa
e) monokineti

ase, i.e. we will suppose that x ∈ T
2 = (0, 1)2, v ∈ S

1 and that f satis�esthe equation(3.1)
∂f

∂t
+ v · ∇xf = σ(x)

[
∫ 2π

0
f(t, x, ω)

dω

2π
− f

]

x ∈ T
2, ω ∈ [0, 2π), t > 0,where v = v(ω) = (cosω, sinω). Initially, the distribution is known: f =

f0 ∈ L∞(T2 × S
1), periodi
 in the phase spa
e, with ‖f0‖L1(T2×S1) = 1.We will assume periodi
 boundary 
onditions for both spatial and anglevariables. Denoting by

ρ(x, t) =
1

2π

∫ 2π

0
f(t, x, ω) dωthe marginal probability density fun
tion for the spa
e variable, the following
onservative equation holds

∂tρ+∇ ·
[

1

2π

∫ 2π

0
f(t, x, ω)v(ω) dω

]

= 0.Then it is expe
ted that ‖f(t, · , · )‖L1(T2×S1) = 1 for all time t.We �rst 
onsider the time dis
retization. Let us denote fn(x, ω) an ap-proximate value of f(t = tn, x, ω). Consider a 
onstant time step ∆t > 0and let tn+1 = tn + ∆t. For time advan
e, it is 
onvenient to 
onsider herea fra
tional step approa
h, by handling transport and s
attering separatelyand sequentially. We shall use the well-known se
ond-order Strang splittings
heme.Let R∆t denote the operator su
h that the distribution f = R∆tf0 is theexa
t solution at time ∆t of the pure s
attering problem with f0 as initialdata:
∂f

∂t
= σ(x)

[
∫ 2π

0
f(t, x, ω)

dω

2π
− f

]

x ∈ T
2, ω ∈ [0, 2π), t > 0,(3.2)

f(t = 0, x, ω) = f0(x, ω).(3.3)Let T ∆t the transport operator over a time step ∆t:
T

∆tf0(x, ω) = f0(x+ v(ω)∆t, ω).Then a se
ond order a

urate solution (in ∆t) of the solution of the wholes
attering problem is given by the Strang splitting approximation:(3.4) f(∆t, · ) ≈ R
∆t/2

T
∆t

R
∆t/2f0.This leads to the dis
rete time advan
e s
heme(3.5) fn+1 = R

∆t/2
T

∆t
R

∆t/2fn.For re
overing the full dis
retization, we now have to approximate bothtransport and s
attering operators.In what follows, we will need working with the 
omponents of the ve
tors xand v. We will hen
e denote x = (x̄, ȳ) ∈ T
2.



6 F. DE VUYST AND F. SALVARANILet
i ∈ {1, . . . , I}, j ∈ {1, . . . , I}, k ∈ {1, . . . ,K}.We will denote by fn

ijk (or fn
i,j,k for readability purposes) an approximatevalue of f(tn, x̄i, ȳj , ωk) 
onsidering a Cartesian spatial grid of 
onstant meshsize h = 1/I,

x̄i =

(

i− 1

2

)

h, ȳj =

(

j − 1

2

)

h, ωk =
2π

K

(

k − 1

2

)

.We will also use the notations
xij = (x̄i, ȳj), σij = σ(xij), vk = v(ωk) = (cos(ωk), sin(ωk)).3.1. S
attering step. For the full dis
retization of the pure s
attering prob-lem, we have to 
onsider a quadrature formula of the integral term and ase
ond order a

urate time advan
e s
heme. It has been shown by Kurganovand Rau
h [9℄ that the trapezoidal rule a
tually provides spe
tral a

ura
y.For the interested reader, in the short Appendix A we re
all some of theresults proved in [9℄. The trapezoidal rule on periodi
 fun
tions gives(3.6) 1

2π

∫ 2π

0
f(tn, xij , ω) dω ≈ 1

K

K
∑

k=1

f(tn, xij , ωk).This quadrature formula is then used into the se
ond order predi
tor-
orre
tortime advan
e s
heme:
f
n+1/2,⋆
ijk = fn

ijk +
∆t

4
σij

[

1

K

K
∑

ℓ=1

fn
i,j,ℓ − fn

ijk

]

,(3.7)
f
n+1/2
ijk = fn

ijk +
∆t

2
σij

[

1

K

K
∑

ℓ=1

f
n+1/2,⋆
i,j,ℓ − f

n+1/2,⋆
ijk

]

.(3.8)We naturally ful�l the 
onservation property at the dis
rete level(3.9) K
∑

k=1

f
n+1/2
ijk =

K
∑

k=1

fn
ijk.3.2. Transport step. We propose a simple se
ond order a

urate (in bothspa
e and time) 
onservative Eulerian solver for the K pure transport prob-lems

∂tfk + vk · ∇xfk = 0,(3.10)
fk(t = 0) = f0

k .(3.11)We have to take 
are of possible spurious os
illations for low-regularitysolutions adding numeri
al vis
osity and, at the same time, to avoid arti�
ialdi�usive e�e
ts in the large-time behaviour. We propose to use a 
onservative�nite-volume s
heme 
ombining a Lax-Wendro� se
ond-order vis
osity term(for se
ond-order time a

ura
y) and an arti�
ial vis
osity term involvingslope re
onstru
tions and slope limiters.



NUMERICAL SIMULATIONS OF DEGENERATE TRANSPORT PROBLEMS 7The 
onservative s
heme reads
fn+1
ijk = fn

ijk −
∆t

h

[

Φ
n+1/2
i+1/2,j,k − Φ

n+1/2
i−1/2,j,k

]

− ∆t

h

[

Φ
n+1/2
i,j+1/2,k − Φ

n+1/2
i,j−1/2,k

]with 
onve
tive �uxes Φ
n+1/2
i+1/2,j,k and Φ

n+1/2
i,j+1/2,k in the x̄ and ȳ dire
tions,respe
tively. The numeri
al �ux in the x̄-dire
tion is given by(3.12)

Φ
n+1/2
i+1/2,j,k =

fn
i,j,k + fn

i+1,j,k

2
cos(ωk)

−1

2

∆t

h
| cos(ωk)|(fn

i+1,j,k − fn
i,j,k)−

1

2
| cos(ωk)|(f̃−,n

i+1,j,k − f̃+,n
i,j,k)with the interpolated states at the x̄-interfa
es(3.13) f̃±,n

i,j,k = fn
i,j,k ±

1

2
minmod(fn

i+1,j,k − fn
i,j,k, f

n
i,j,k − fn

i−1,j,k),where the last term in the right-hand-side of (3.13) is the 
lassi
al minmodslope limiter fun
tion:
minmod(a, b) = sign (a)1(ab>0) min(|a|, |b|).The numeri
al �uxes in the ȳ dire
tion are 
onstru
ted in the same way.Be
ause of its expli
it feature, the �nite-volume s
heme is 
onditionallystable, subje
t to a Courant-Friedri
hs-Lewy (CFL) 
ondition. Sin
e the dis-
rete velo
ities vk are all unit ve
tors, we will use the time step 
orrespondingto CFL number �one-half�(3.14) ∆t

h
=

1

2setting the time step value. By 
onstru
tion, the whole numeri
al s
heme isse
ond-order a

urate on both spa
e and time. The quadrature formula usedfor the angle integrals into the s
attering term has the spe
tral a

ura
y (seeappendix A) and so it will be a

urate for su�
iently smooth solutions.3.3. Remarks on the free transport. It is well known that the numeri-
al approximation of free transport phenomena in periodi
 domains is verydeli
ate when dealing with a �nite dis
retization on the velo
ity set [14℄.Indeed, non physi
al plateaux of order of t∆v 
an appear in the solution andin�uen
e the numeri
al result.It is apparent that a 
orre
t treatment of the free transport is 
ru
ial inour 
ase, sin
e the la
k of exponential 
onvergen
e to equilibrium is a 
onse-quen
e of the existen
e of in�nite 
hannels in whi
h only the free transportis allowed, as explained in the Introdu
tion.In parti
ular, if the dis
rete velo
ity set would not in
lude the dire
tionsof the in�nite free 
hannels, the dis
retization would arti�
ially remove thedegenera
y of the problem: after a possibly large but �nite time interval, allthe numeri
al opti
al paths would interse
t the s
attering region, and hen
ean exponential-like 
onvergen
e 
ould be observed.On the other hand, if the numeri
al set of velo
ities in
ludes the dire
tionof an in�nite 
hannel, denoted as ω̄k, the numeri
al pro
edure indu
es anoverpopulation of su
h dire
tions, sin
e all the opti
al paths whose dire
-tions belong to the interval [ω̄k − π/K, ω̄k +π/K] will be identi�ed with the



8 F. DE VUYST AND F. SALVARANI

Figure 1. Cross se
tions σ1 (left), σ2 (
entre) and σ3 (right).The white region shows the points of T2 where the 
ross se
-tions vanish.dire
tion of the in�nite 
hannel itself. In this 
ase, the numeri
al simulationswill underestimate the de
ay, espe
ially in large time.However, the method des
ribed here is su�
iently a

urate for our pur-poses, as shown in the next Se
tion.4. Numeri
al eviden
e of large-time behaviourConsider the problem on the unit spatial square domain T
2 = [0, 1]2, withperiodi
 spatial boundary 
onditions and with initial 
ondition f0 su
h that

‖f0‖L1(T2×S1) = 1. By the mass 
onservation, we have that the steady stateis f∞ = 1. We will evaluate the time evolution for the squared L2-norm ofthe deviation to the steady state f∞, i.e. the time evolution of the quantity(4.1) E2(t) := ‖f(t, · , · )− f∞‖2L2(T2×S1),for di�erent types of 
ross se
tions.For the numeri
al dis
retization, unless otherwise spe
i�ed, we 
onsidera h-uniform Cartesian spatial grid 
omposed of 256 × 256 points. For theangle variable dis
retization, we also use a uniform grid ωk = 2π(k−1/2)/K,
k = 1, . . . ,K with K = 256. So this dis
rete problem is 
omposed of 2563 =
16, 777, 216 grid points.We also show two numeri
al experiments with di�erent dis
retizations ofthe domain, in order to show how the grid in�uen
es the numeri
al results.We use a �xed time step, as pres
ribed by (3.14). In all simulations, the
omputational time window is t ∈ [0, T ], with T = 12.4.1. A 
ir
ular degenerate 
ross se
tion. We 
onsider here the spe
i�

ross se
tion σ : T2 → R de�ned, in the fundamental domain T

2, by
σ = σ1 := 20× 1T2\Y1/4

,(see Figure 1, left), and the initial 
ondition is
f0(x, ω) =

1

2π

1− 1T2\Y1/4

‖1− 1T2\Y1/4
‖L1

∀x ∈ T
2, ω ∈ [0, 2π].By 
onstru
tion, ‖f0‖L1(T2×S1) = 1. Note that the 
ross se
tion (whi
h doesnot satisfy the geometri
al 
ondition) and the initial 
ondition are, up to anormalization fa
tor, the same used for proving Theorem 2.1 in [1℄. Hen
e,



NUMERICAL SIMULATIONS OF DEGENERATE TRANSPORT PROBLEMS 9we 
an 
ompare the numeri
al simulations to a theoreti
al result that givesan upper bound on the L2-distan
e between the solution at time t and theequilibrium.

0 2 4 6 8 10 12
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256x256x256
256x256x512

Figure 2. Time evolution of 1/E2(t), with 
ross se
tion σ1with two di�erent dis
ertizations in velo
ity. The behaviouris linear in time.Our numeri
al experiments show that 1/E2(t) in
reases in time like tfaithfully. At �rst instants, between the initial time and roughly time t = 3,the dis
repan
y de
reases at a lower rate, then the linear �t be
omes almostperfe
t after time t = 3. It is observed on Figure 2 that
E2(t) ≃ C

t
, t ≥ 3for a 
onstant C > 0.We note moreover that the simulation with 256 × 256 × 512 grid pointsand the simulation with 2563 grid points give very similar result.Finally, for information purposes, we also plot on Figures 3 and 4 the
ontour of the dis
rete marginal distribution

x 7→
∫ 2π

0
f(tn, x, ω) dω.at t0 = 0 and at di�erent dis
rete instants tn respe
tively.We remark that the dis
rete solution does not lead to strong 
hanges ofgradient and that the slope limiter of the transport solver does not generate�rst-order numeri
al di�usion and O(h) errors.Our numeri
al simulations hen
e suggest that the theoreti
al large-timelower bound behaviour on E of order t−1/2 is the exa
t de
ay rate.4.2. A squared degenerate 
ross se
tion. Let (x̄, ȳ) ∈ T

2. We 
onsiderhere the spe
i�
 
ross se
tion σ : T
2 → R de�ned, in the fundamental
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Figure 3. Contour of the marginal spatial distribution (with
ross se
tion σ1): initial 
ondition.domain T
2, by

σ = σ2 :=

{

20 0.1 ≤ x̄ ≤ 0.9 and 0.1 ≤ ȳ ≤ 0.9
0 otherwise(see Figure 1, 
entre). This 
ross se
tion does not satisfy either the geo-metri
al 
ondition, hen
e we 
annot expe
t, by Theorem 2.3, an exponential
onvergen
e to equilibrium. Moreover, it does not exist any ball of radius

r < 1/2 su
h that the support of σ2 is embedded into the ball. Hen
e, theestimate of Theorem 2.1 � based on the geometri
al properties of a 
ir
ularsupport of the s
attering region � 
annot be applied here.The initial 
ondition here is given by
f0(x, ω) =

1

2π

1− 1{(x̄,ȳ)∈T2, 0.1≤x̄≤0.9 and 0.1≤ȳ≤0.9}

‖1− 1{(x̄,ȳ)∈T2, 0.1≤x̄≤0.9 and 0.1≤ȳ≤0.9}‖L1

,

x ∈ T
2, ω ∈ [0, 2π]. By 
onstru
tion ‖f0‖L1(T2×S1) = 1.This numeri
al experiment is the most deli
ate one, sin
e the region ofdegenera
y 
overs a small portion of the domain and, at the same time,it in
ludes two in�nite 
hannels. We 
an hen
e expe
t that 
oarse gridsgenerate bad results.In Figure 5 we have superposed three plots. The �rst one has been ob-tained by using an uniform grid with 1283 points in the phase spa
e. Thisnumeri
al simulation is very poor, espe
ially after t = 5.The se
ond plot refers to an uniform grid with 2563 points in the phasespa
e, su
h that the dire
tions of the in�nite 
hannels 
oin
ide with somedis
retized velo
ity dire
tions. It shows that 1/E2(t) in
reases in time like tup to t = 10, and then the 
onvergen
e speed to equilibrium slightly degradesfor 10 ≤ t ≤ 12.In the third numeri
al experiment, obtained by working in a phase-spa
egrid with 256× 256× 512 points, the quantity 1/E2(t) in
reases in time like

t up to t = 12, without showing any degradation of the trend to equilibrium.The di�eren
es between the two last experiments 
an be explained interms of the sensitivity of the pro
edure with respe
t to the dis
retizationof the velo
ities whose dire
tions are 
lose to the dire
tion of the in�nite
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a) b)

) d)
e) f)Figure 4. Contours of the marginal spatial distribution,with 
ross se
tion σ1, for six di�erent instants: a) t = 0.08,b) t = 0.62, 
) t = 1.00, d) t = 1.50, e) t = 1.80 and f)

t = 3.50.
hannels, as dis
ussed in Subse
tion 3.3. The overall qualitative behaviourof the plots provides a numeri
al eviden
e of the 
onvergen
e of the method.4.3. A degenerate 
ross se
tion satisfying the geometri
al 
ondi-tion. We �nally tested the situation of a 
ross se
tion that satis�es the ge-ometri
al 
ondition. In this 
ase, Theorem 2.3 gives a result of 
onvergen
eto equilibrium of exponential type with respe
t to the L1-norm.Let (x̄, ȳ) ∈ T
2. We 
onsider the 
ross se
tions σ3 : T2 → R de�ned as(4.2) σ = σ3 :=

{

20 0.45 ≤ x̄ ≤ 0.55, or 0.45 ≤ ȳ ≤ 0.55
0 otherwise(see Figure 1, right).The initial 
ondition here is given by

f0(x, ω) =
1

2π

1− 1{(x̄,ȳ)∈T2, 0.45≤x̄≤0.55 or 0.45≤ȳ≤0.55}

‖1− 1{(x̄,ȳ)∈T2, 0.45≤x̄≤0.55 or 0.45≤ȳ≤0.55}‖L1

,
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Figure 5. Time history of 1/E2(t), with 
ross se
tion σ2and with three di�erent dis
retizations of the phase spa
e.
x ∈ T

2, ω ∈ [0, 2π]. By 
onstru
tion ‖f0‖L1(T2×S1) = 1.The numeri
al simulation agrees with the theoreti
al result, and an expo-nential 
onvergen
e in L1-norm has been numeri
ally observed (see Figure6).

Figure 6. Time evolution of log10 (‖f − f∞‖L1(T×S1)

) with
ross se
tion σ3. The behaviour is exponential in time.We �nally show, in Figure 7, the time de
ay of E. Indeed, we are in-terested in 
omparing, with respe
t to the same metri
s, the di�erent timede
ays obtained with di�erent 
ross se
tions. Again in this 
ase, we obtainexponential 
onvergen
e to equilibrium.
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al 
on�rmation of the su�
ien
y of the geo-metri
al 
ondition for obtaining an exponential de
ay to equilibrium.
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Figure 7. Time evolution of 2 log10(E(t)) with 
ross se
tion
σ3. The behaviour of E(t) is exponential in time.Appendix A. Quadrature formula for periodi
 fun
tionsWe give here some 
omments about the 
hoi
e of the quadrature formulafor the angle variable integration and we mainly refer to a note by Kurganovand Rau
h [9℄. Denote by W r,p

per the Bana
h spa
e of periodi
 fun
tions on Rwhose derivatives up to order r belongs to Lp
per(R). The trapezoidal rule

∫ 2π

0
f(ω) dω ≈ TK(f) :=

2π

K

K
∑

k=1

f(ωk), ωk =
2π

K

(

k − 1

2

)

, k = 1, . . . ,K,appears to be relevant be
ause of the periodi
ity and the invarian
e by trans-lation. The quadrature error is equal to
EN (f) = TN (f)−

∫ 2π

0
f(ω) dω.Sin
e f is periodi
 in ω, it 
an be written as a Fourier series:

f(x) =
∑

n∈Z

cne
inω, cn =

1

2π

∫ 2π

0
f(ω)e−inω dω.Let P(m) be the set of all trigonometri
 polynomials of degree at most m.Summing �nite geometri
 series shows that TK(einω) = 0 for 0 < |n| < K:hen
e TK is an exa
t quadrature formula for trigonometri
 polynomials ofdegree K − 1. For any P ∈ P(K − 1), we then have

EK(f) = EK(f − P ) = TN (f − P )−
∫ 2π

0
(f(ω)− P (ω)) dω
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|EK(f)| ≤ 4π inf

P∈P(K−1)
‖f − P‖L∞ .The trapezoidal rule thus provides spe
tral a

ura
y be
ause of the rapidde
ay of the Fourier 
oe�
ients for in�nitely smooth fun
tions f . Kurganovand Rau
h [9℄ were able to show that, for f ∈ W r,1

per and 1 < r, the error ofthe trapezoidal quadrature rule satis�es
|EK(f)| ≤ C

Kr
‖f (r)‖L1([0,2π]), C := 2

∞
∑

k=1

1

kr
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