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Spintronics (not to be confused with quantum computing)
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The Rashba effect

trapped electrons
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The Rashba effect

Effective Field Q = ag(p x e3)
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Momentum p = (p1, p2,0)

Position x = (X1, X2, 0)




The Rashba effect

Spin vector




The Rashba Hamiltonian

Hg = —h—2A+V I—ita (. ©
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o = Rashba constant.

V = external (e.g. gate) potential
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Diffusive models of spin-orbit transport

str?:gizre Dynamics Collisions
El Hajj (2008) - CMS (2014) | BIPOLAR/FULL | CLASSICAL BGK
Barletti-Méhats JMP (2010) BIPOLAR QUANTUM (Q)BGK
Negulescu-Possanner, KRM (2011) FULL CLASSICAL DETAILED
This work FULL QUANTUM (Q)BGK




Fundamental tool: the Wigner transform

a(x,p)=(273—h)d/deA(x+§,x—%)e"f"’/"df. }

Provides a 1-1 correspondence W between a QM operator A (with
formal kernel pa(x, y)) and a phase-space function a(x, p)

a=W(A) J




Moyal product - definition

The operator algebra is transferred to phase-space functions, which
defines the Moyal product:

a#b =W (AB) J

(where a= W(A) and b = W(B)).




Moyal product - semiclassical expansion

The Moyal product can be semiclassically expanded as follows:

a#b =" h*a#b,

k=0

3 (;!12: (Vevia) (Vsvib).

lee|+18]=k

a#ib =

1
(20)

In particular, _
a#ob = ab, a#1b = é{a, b}.




Wigner equation - 1
By applying the Wigner transform to the Schrédinger equation

ihdpp = Hetp
we obtain the Wigner equation for our system
oW +p-Vwy +aVt-w—0[V]w =0

- - = & =
31W—|—p~VW+aVLW0+—@[V]W—?apLx w=0

where wy and w = (wy, w,, w3) are the Pauli components of the
Wigner matrix w

w=wol+WwW-G=W(>Wy*)




Wigner equation - 2

We have used the following notations:




(Scaled) Wigner-BGK equation

Add a BGK-like collisional term and rescale variables:

Otwo + p - Vg +eaVt-w— O[V]wp = @

—

HW +p- VW + eaV+twy — O[V]W — 2aptx w = v

T

e = scaled Planck constant
7 = scaled collision time




Quantum equilibrium

“Quantum Maxwellian”:

g = &xp(—hr + a) = W [exp(—Hg + A)]

a = matrix of Lagrange multipliers

Constraint of assigned density:

(@) = / g(x.p)dp=n

Assumption of small polarization regime:

n=nyl+en-&
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Chapman-Enskog expansion

In this part we consider the diffusive limit
<1

in the fully-quantum regime
e~ 1

We rewrite the Wigner-BGK equation in the concise form

Tow+7rT.w=9g—w

Note that this is not a diffusive scaling.




Chapman-Enskog expansion: standard case

Usually the C-E expansion works as follows:
Pow+rw=g-—w, w=w" 4w 4 2pw@ 4. ..

Then:

0)

w® =g, wh=_Tg,

and, by integration w.r.t. p,

Toin = —(Tg) + 7(TTg)

which is only compatible with (Tg) = 0 (the equilibrium carries no
current).




Chapman-Enskog expansion: quantum case

Theorem

Let g be the quantum Maxwellian (depending on the Lagrange
multipliers a and subject to the density constraint (g) = n). Then

(Tg) = —ila,n|=2axn-¢

Then, in the non-commutative case, the equilibrium state does carry
a nonvanishing current.

That is why a change of the scaling is required.
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Quantum DD equations

Our modified C-E method leads to
on=—(T.g) +(T.T.g) - T<TF§% 09n)
Explicitly yields the quantum DD equations (QDDE):
dno = 79; [Modj(ao + V) + i - 9;8] — 2rfaVE - (8 x 1)
O =2cdx i+ 7ed; [R0)(ao + V) + nod;d — 2a x (p;g)]
—2reaV*(ap + V) x i — 27ea(V+ x @)ng

+2ra(p* - §)d - 27al(3- p1)3)




Drawbacks

Remember that a depend on n through the constraint

(Exp(—hp+a))=n

» very implicit
» very non-local

» few numerical methods available [Gallego-Méhats (2005),
B.-Méhats-Negulescu-Possanner (2015)]




Expansion of equilibrium state: method

We now assume ¢ < 1 and perform a semiclassical expansion of the
quantum Maxwellian g = Exp(—hgr + a).

This can be computed by using

g(B) = &xp (— B(ha + a))
so that

9p9(8) = —(ha — a)#9(P),  9(0) =1
or, for the Laplace transform g(z),

9(2) — I = —(hs — a)#9(2)




Expansion of equilibrium state: method

Now we expand
hg = hg + ehy

(where hy = @ + Vand hy = apt x &)

#=Ho+ ettt +EHa
9= 99 +egM 4 2g® ...

and substitute into the equation for §(z).




Expansion of equilibrium state: method

We obtain in this way

N 1
Z+ 5+ V—a

and (omitting 2)
9 =Rh R+ Rhy#R

9® = R[RHE + hy#41 R + ho#1(R2hy) + ho#2R)




Expansion of equilibrium state: result

Computations yield:

o0 =7 Via
g9 =0
9" =0
=(1) _ e—é—v+ao(§_ ap*)
VA
ez ol 2 1
g(()z) =—F [|a —ap*|” - 5 (p,pjaff’)/ao — |Vaf — 3Aao>}




Expansion of the Lagrange multipliers

ago) = log (—°>
30 _ "1

Mo
a(()” 0
d’=o0

@_ (2, 10"  1A/ng
ap = (Oz +2n§+6\/n>0

)

(@@ is not needed)

Substituting into the QDDE yields the following




O(¢?) DD equations

1 A\/Ng
Othy = Taj (ajno aF noa,- V) = Tezénoaj \/\2_0_

8tﬁ = 768,- (8,77 + ﬁ@j V) — 27ed?h

1
_2rea (va +viv— Vn”") x fi
0

drift-diffusion

v

v

Bohm potential

v

D’yakonov—Perel’ spin decoherence

v

spin-orbit coupling and gate control




Summary

v

QDD equation for spin-orbit electrons

» O(¢?)-DD approximation

v

assumption of small polarization regime

v

previous models arising as particular cases




Future work

» drop the small polarization assumption
» proceed with HD

» extend to other spin-orbit Hamiltonians




Thank you!
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