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Kinetic BGK approximation

BGK model for a single gas (Bhatnagar, Gross, Krook, Phys. Rev. (1954))

f . .
% +Vv-Vf=vy(M-¥) where M is a local Maxwellian

M. Bisi, Parma BGK model for monoatomic and polyatomic gases



Kinetic BGK approximation

BGK model for a single gas (Bhatnagar, Gross, Krook, Phys. Rev. (1954))

of

RS Vxf=v(M-F) where M is a local Maxwellian

Some BGK models for gas mixtures
@ Inert mixtures
@ Andries, Aoki, Perthame, J. Stat. Phys. (2002)
@ Klingenberg, Pirner, Puppo, Kinet. Relat. Models (2017)
@ Haack, Hauck, Murillo, J. Stat. Phys. (2017)
@ Bobylev, Bisi, Groppi, Spiga, Potapenko, Kinet. Relat. Models (2018)

i, Parma BGK model for monoatomic and polyatomic gases



Kinetic BGK approximation

BGK model for a single gas (Bhatnagar, Gross, Krook, Phys. Rev. (1954))

of

RS Vxf=v(M-F) where M is a local Maxwellian

Some BGK models for gas mixtures
@ Inert mixtures
@ Andries, Aoki, Perthame, J. Stat. Phys. (2002)
@ Klingenberg, Pirner, Puppo, Kinet. Relat. Models (2017)
@ Haack, Hauck, Murillo, J. Stat. Phys. (2017)
@ Bobylev, Bisi, Groppi, Spiga, Potapenko, Kinet. Relat. Models (2018)
@ Reactive mixtures
@ Groppi, Spiga, Phys. Fluids (2004)
@ Kremer, Pandolfi Bianchi, Soares, Phys. Fluids (2006)
@ Bisi, Groppi, Spiga, Phys. Rev. E (2010)

BGK model for monoatomic and polyatomic gases



Kinetic BGK approximation

BGK model for a single gas (Bhatnagar, Gross, Krook, Phys. Rev. (1954))

f . .
% +Vv-Vf=vy(M-¥) where M is a local Maxwellian

Some BGK models for gas mixtures
@ Inert mixtures
@ Andries, Aoki, Perthame, J. Stat. Phys. (2002)
@ Klingenberg, Pirner, Puppo, Kinet. Relat. Models (2017)
@ Haack, Hauck, Murillo, J. Stat. Phys. (2017)
@ Bobylev, Bisi, Groppi, Spiga, Potapenko, Kinet. Relat. Models (2018)
@ Reactive mixtures
@ Groppi, Spiga, Phys. Fluids (2004)
@ Kremer, Pandolfi Bianchi, Soares, Phys. Fluids (2006)
@ Bisi, Groppi, Spiga, Phys. Rev. E (2010)
@ Polyatomic gases
@ Brull, Schneider, Contin. Mech. Thermodyn. (2009)
@ Bisi, Caceres, Commun. Math. Sci. (2016)
@ Pirner, J. Stat. Phys. (2018)
@ Bisi, Monaco, Soares, J. Phys. A (2018)

M. Bi arma BGK model for monoatomic and polyatomic gases 2/26



Plan of the talk
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Plan of the talk

@ General structure of BGK relaxation models for gas mixtures

@ BGK model for a mixture of monoatomic and polyatomic
gases
(Bisi, Travaglini, submitted (2019))

@ Macroscopic equations and some preliminary numerical tests
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Boltzmann and BGK equations for gas mixtures

We consider a mixture of A monoatomic species (i =1,...,A)
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Boltzmann and BGK equations for gas mixtures

We consider a mixture of A monoatomic species (i =1,...,A)
Boltzmann equations

of;

A
StV Vi kzi Qi (f fi)

Wit Qulff) = [ dwde gy o)) fw) =) fuw)

Cross sections gi(lyl, 1), 1 € [-1, 1] depend on reduced masses and on the
intermolecular potential
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Boltzmann and BGK equations for gas mixtures

We consider a mixture of A monoatomic species (i =1,...,A)
Boltzmann equations

of;

A
StV Vi kzi Qi (f fi)

Wit Qulff) = [ dwde gy o)) fw) =) fuw)

Cross sections gi(lyl, 1), 1 € [-1, 1] depend on reduced masses and on the
intermolecular potential

BGK approximation
Boltzmann collision operators are replaced by relaxation—type

operators
of 2
a_tl +V - Vyfi = ;Vik(nik M — ;)
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Two classes of BGK models

© Model with a sum of (binary) relaxation operators for each
species

of; A Tix
a_lf"'V'foi:kZ::lVik [nikM(V;Uik,m—'i)—fi] i=1,...,A
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Two classes of BGK models

© Model with a sum of (binary) relaxation operators for each
species

of; A Tix
a_lf"'V'foi:kZ::lVik [nikM(V;Uik,m—'i)—fi] i=1,...,A

@ Model with a single relaxation operator for each species
af; 3 T :
a—£+v-VXf,-:v,-[n,-M(v;u,»,E'i)—f,-] i=1,...,A

as in Andries, Aoki, Perthame (2002); for each species i, one
assumes nj = M, Uy =G;and Ty = T; (for any k)

M. Bisi, Parma
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@ Models with sums of BGK operators allow to reproduce more
details of the original Boltzmann equations, as single species
exchange rates of momentum end energies (see Bobylev, Bisi,
Groppi, Spiga, Potapenko, Kinet. Relat. Models (2018))
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@ Models with sums of BGK operators allow to reproduce more
details of the original Boltzmann equations, as single species
exchange rates of momentum end energies (see Bobylev, Bisi,
Groppi, Spiga, Potapenko, Kinet. Relat. Models (2018))

@ For inert or reactive mixtures of polyatomic gases, with
discrete or continuous internal energy, BGK models with a
single relaxation operator for each species are available (Bisi,
Céaceres, Commun. Math. Sci. (2016), Bisi, Monaco, Soares, J. Phys. A -
Math. Theor. (2018)). This kind of models is more manageable,
since it involves a lower number of free parameters
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@ Models with sums of BGK operators allow to reproduce more
details of the original Boltzmann equations, as single species
exchange rates of momentum end energies (see Bobylev, Bisi,
Groppi, Spiga, Potapenko, Kinet. Relat. Models (2018))

@ For inert or reactive mixtures of polyatomic gases, with
discrete or continuous internal energy, BGK models with a
single relaxation operator for each species are available (Bisi,
Céaceres, Commun. Math. Sci. (2016), Bisi, Monaco, Soares, J. Phys. A -
Math. Theor. (2018)). This kind of models is more manageable,
since it involves a lower number of free parameters

@ We generalize this way of modelling to a mixture of
monoatomic and polyatomic particles
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Mixture of monoatomic and polyatomic species

@ We consider a mixture of A monoatomic “9‘
gases and B polyatomic gases . .
@ Each polyatomic gas has a proper number L' ‘ .
of discrete internal energy levels .

& o
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Mixture of monoatomic and polyatomic species

@ We consider a mixture of A monoatomic .‘9‘
gases and B polyatomic gases . .
@ Each polyatomic gas has a proper number L' ‘ .
of discrete internal energy levels .

@ Monoatomic gases G/, withi=1,..., A:

they are described by distributions ', and densities n',
velocities u', temperatures T' are provided by

i — i = — i i — o i2F
n' = L;af (v)dv, u Y RSvf(v) dv, T 3 [RSlv u'l“f(v) dv
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@ Polyatomic gases G', withi= A+1,...,A + B:
@ each gas is divided into L’ monoatomic components Cj’
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@ Polyatomic gases G', withi= A+1,...,A + B:
@ each gas is divided into L’ monoatomic components Cj’
@ each component C/.’ is characterized by a different energy
level Ej’ (with E]’ < Ep, forj<h)
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@ Polyatomic gases G', withi= A+1,...,A + B:
@ each gas is divided into L’ monoatomic components Cj’
@ each component C/.’ is characterized by a different energy
level Ej’ (with E]’ < Ep, forj<h)
@ each component has its own distribution fj’, density n/’.,
velocity u]’., temperature Tj’
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@ Polyatomic gases G', withi= A+1,...,A + B:
@ each gas is divided into L’ monoatomic components Cj’
@ each component C/.’ is characterized by a different energy
level Ej’ (with E]’ < Ep, forj<h)
@ each component has its own distribution fj’, density n/’.,
velocity u]’., temperature Tj’
@ macroscopic fields of gas G' are provided by

. Lo R -
n' = E n, u== E nul, n'T= E niT+=m E nj(uiP-u'?)
j o 22Y i 1iT3 j\IY;
' ' 1 1
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@ Polyatomic gases G', withi= A+1,...,A + B:
@ each gas is divided into L’ monoatomic components Cj’
@ each component C/.’ is characterized by a different energy
level Ej’ (with E]’ < Ep, forj<h)
@ each component has its own distribution fj’, density n/’.,
velocity u]’., temperature Tj’
@ macroscopic fields of gas G' are provided by

. Lo R -
n' = E n, u== E nul, n'T= E niT+=m E nj(uiP-u'?)
j o 22Y i 1iT3 j\IY;
' ' 1 1

@ We have to manage a set of A + LA*1 + ... + [ A*B equations

for distributions f = (f, ..., F,'3
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@ Possible collisions

Monoatomic-Monoatomic
G'+G"'— G'+G"

1<iih<A

Polyatomic-Polyatomic Polyatomic-Monoatomic
i h i h i h i h
Ci+C — C+Cy G'+C' — G+

A+1<i,h<A+B 1<i<A, A+1<h<A+B
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@ Possible collisions

Monoatomic-Monoatomic
G'+G"'— G'+G"

1<iih<A

Polyatomic-Polyatomic
i h i h
Ci+C — C+Cy

A+1<i,h<A+B

Polyatomic-Monoatomic
G+ cjh — G'+ (]

1<i<A, A+1<h<A+B

@ Preservation of global momentum and energy

mv+m’

w=mv +m

hW/

1 1 1 o, .1 ,
Em’|v|2+E;+§mh|w|2+E[<’=Em’|v|2+E,’+§mh|w|2+E,’},

where internal energies may be equal to zero if one or both
gases are monoatomic
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Collision equilibria

Maxwellian distributions f,, sharing a common velocity and
temperature:

@ for monoatomic gases

]

. o T .
f,’v,(v)=n’M’(v;u,H), i=1,...,A
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Collision equilibria

Maxwellian distributions f,, sharing a common velocity and
temperature:

@ for monoatomic gases

. o T .
f,’v,(v)=n’M’(v;u,H), i=1,...,A

@ for polyatomic gases

_ - T . ' ,
ﬂM(v)=n]’-M’(v;u,W), i=A+1,...,A+B, j=1,...,L

M. Bisi, Parma BGK model for monoatomic and polyatomic gases



Collision equilibria

Maxwellian distributions f,, sharing a common velocity and
temperature:

@ for monoatomic gases
i ingiloe T :
fuv)=n'M v,u,; , i=1,...,A

@ for polyatomic gases

_ - T . ' ,
ﬂM(v)=n]’-M’(v;u,W), i=A+1,...,A+B, j=1,...,L

n;::nfexp[ EI]/Z’:exp( E']

Since internal energies are increasing with their subindex, in any
equilibrium configuration we have n; > nj, for any j < k

with
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BGK model by Bisi, Travaglini (2019)

We take a single relaxation operator for each component

8fi i i i i ;

E"'V'fo:V(M—f), I:1,...,A

of! o .
E"'V'VXGI:V}(M}—GI), i=A+1,...,A+B, j=1,...,L

M. Bisi, Parma
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BGK model by Bisi, Travaglini (2019)

We take a single relaxation operator for each component

8fi i i i i ;

E"'V'fo:V(M—f), I:1,...,A

of! o .
E+V-qu’:v,’-(M,’-—q’), i=A+1,...,A+B, j=1,...,L

with Maxwellian attractors
. S m 3/2 mi
=) |- o]
2n T 2T

3/2 i
Miv) = 7l (LIN) exp [— ilv - G|2] ,
J NernT 2T
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BGK model by Bisi, Travaglini (2019)

We take a single relaxation operator for each component

8fi i i i i ;

E"'V'fo:V(M—f), I:1,...,A

of! o .
E+V-qu’:v,’-(M,’-—q’), i=A+1,...,A+B, j=1,...,L

with Maxwellian attractors
. S m 3/2 mi
M’v:ﬁ’(—N) ex [——NV—CIZ],
V) 2n T P 2 T| |
. . m' 3/2 mi
Mi(v =~’.(—N) ex [——~|v—a|2],
V) =1 2nT Plm 27

o L i i
. i o E-E; E-E
with J’ =N exp (— ’T)/lz exp [— z ]

= /', 0, T are A+ B +4 disposable free parameters
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Strategy: we impose that the BGK model preserves the correct
collision invariants
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Strategy: we impose that the BGK model preserves the correct
collision invariants

@ number densities of monoatomic species

v"f(/w'—f")dv:o i=1,...,A
RS
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Strategy: we impose that the BGK model preserves the correct
collision invariants

@ number densities of monoatomic species
v"f(/w'—f")dv:o i=1,...,A
R3

@ number densities of polyatomic gases

L/
Zv;f(/\/t;ﬁ—g’)dv:o i=A+1,... A+B
[
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Strategy: we impose that the BGK model preserves the correct
collision invariants

@ number densities of monoatomic species
v"f(/w'—f")dv:o i=1,...,A
R3
@ number densities of polyatomic gases
Zv;f(/\/t;—g')dv:o i=A+1,... A+B
[

@ global mean velocity

A A+B L'
Zv"m’f v(M - f)av + Z Zv;m’f V(M - f)dv =0
ey RS i=A+1 =1 R3
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Strategy: we impose that the BGK model preserves the correct
collision invariants

@ number densities of monoatomic species
v"f(/w'—f")dv:o i=1,...,A
R3
@ number densities of polyatomic gases
Zv;f(/\/t;—g')dv:o i=A+1,... A+B
[

@ global mean velocity

A A+B L'
Zv'm'fR3v(M'-f')dv+_Z Zv]’.m’fRav(M}—fj’)dvzo
i=1 i=A+1 j=1
@ total energy
A 1 A+B L 1
i i 2 i I} i ing2 i i i —
;Ev m fR3|v| M —f)dv+i;1;vij3(§m|v| +E}.)(Mj—lj-)dv—0
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Strategy: we impose that the BGK model preserves the correct
collision invariants

@ number densities of monoatomic species
v"f(/w'—f")dv:o i=1,...,A
R3
@ number densities of polyatomic gases
Zv;f(/\/t;—g')dv:o i=A+1,... A+B
[

@ global mean velocity

A A+B L'
Zv'm'fR3v(M'-f')dv+_Z Zv]’.m’fRav(M}—fj’)dvzo
i=1 i=A+1 j=1
@ total energy
A 1 A+B L 1
i i 2 i I} i ing2 i i i —
;Ev m fR3|v| M —f)dv+i;1;vij3(§m|v| +E}.)(Mj—lj-)dv—0

= These are A + B + 4 constraints for our A + B + 4 free parameters
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Such conditions provide

fi=n i=1,...,A
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Such conditions provide
i=1,...,A

al=n
il = [2 V] n]’] [2 exp (— E-& ; & )]/
=1 k=1

£ E - El
Zv},exp(—%) i=A+1,... A+B

h=1
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Such conditions provide

f=n i=1,...,A
Li L/. . . Li . .
i . E - E; . El —E
Si_ K h _
A= Zv}n} Zexp(—Tl) / Zv}, exp(—Tl) i=A+1,...,A+B
j=1 k=1 h=1
A+B L! A+B L'

ot}
i
g
<.
3
3.
C
+
M
gl
=~
3
=]
\C—
—
gl
<.
3
3
+
M
gl
=~
3
=3
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Such conditions provide

A= i=1,...,A
. El - E
Zy’hexp(— h? 1) i=A+1,...,A+B

reletSE)e

(S § S gt [Sme § Sm

i

i=A+1 j=1 i=A+1 j=1

and a transcendental equation for auxiliary temperature

F(T) = A|where A is an explicit function of the actual
macroscopic fields and

o o sU o El (_ELTEQ)
T(T)__T[Zyn+§iyn]+§[2yj’:n;] kLlle kexlz Ei,;l)

i=A+1 j=1 =A+1\ j=1 h=1 V), EXP =
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Such conditions provide

f=n i=1,...,A
. El - E
Zy’hexp(— h? 1) i=A+1,...,A+B

{2 ][Zexp< )

(S § S gt [Sme § Sm

i=A+1 j=1 i=A+1 j=1

i

and a transcendental equation for auxiliary temperature

F(T) = A|where A is an explicit function of the actual
macroscopic fields and

A+B L A+B (LI L Vi El exp( ._Ei)
(F(T)——T[Zvn+ZZvn]+Z[Zvn] — =
-

i=A+1 j=1 =A+1\ j=1 h=1 V), EXP

F (T) is strictly monotone and it varies from
lims o 7(7) = 2258, (SE, vin) EL <A to limg . F(T) = +oo
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Such conditions provide

"‘I

i

=n i=1,...,A
. El - E
Zy’hexp(— h? 1) i=A+1,...,A+B

reletSE)e

(S § S gt [Sme § Sm

i=A+1 j=1 i=A+1 j=1

and a transcendental equation for auxiliary temperature

F(T) = A|where A is an explicit function of the actual
macroscopic fields and

A+B L A+B (LI L Vi El exp( ._Ei)
(F(T)——T[Zvn+ZZvn]+Z[Zvn] — Gy
-

i=A+1 j=1 =A+1\ j=1 h=1 Vh exp(

F (T) is strictly monotone and it varies from

lims o 7(7) = 2258, (SE, vin) EL <A to limg . F(T) = +oo
= F(T) =/ admits a unique solution for any values of masses,
energies, collision frequencies, and species fields
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In space homogeneous conditions,

A A+B L'
H[f] = ff’ log(f') dv + ff-’ log(f') dv
f Zl 1" log(f) Azl,zl 1/ tog()

is a Lyapunov functional for the present BGK model:
Vi, H[f1<0 and H[f]> H[fy]
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In space homogeneous conditions,

A A+B LI
H[f]= ff’lo Y dv + ff-’lo Y dv
[£] Zl 1 log() Azl,zl 1/ tog()

is a Lyapunov functional for the present BGK model:
Vi, H[f1<0 and H[f]> H[fy]

Sketch of the proof of the entropy dissipation

A+B L'

HIt =) fR (M =ylog(fydv+ > D] fR (M; = 1)) log (7)) dv

i=A+1 j=1
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In space homogeneous conditions,

A A+B LI
H[f]= ff’lo Y dv + ff-’lo Y dv
[£] Zl 1 log() Azl,zl 1/ tog()

is a Lyapunov functional for the present BGK model:
Vi, H[f1<0 and H[f]> H[fy]

Sketch of the proof of the entropy dissipation

A A+B L'
HIf1= >V f (M =) log(fydv+ > > v f (Mi — 1) log(f) dv
=1 R3 i=A+1 =1 R3
We can check that
A A+B L'
Zv' f (M=) log(M') dv + Z ZV; f (Mi~fl) log(M}) dv =0, ()
i=1 R3 i=A+1 o1 R3

hence, by usual convexity arguments, Vi # f, ,

a .
Tl — i i Afi i _
H[f]= .:1Vj1;3(f M)Iog(Mi)dv

I

A+B

L' fi
i i i /
> Zvijs (f-M) Iog(mj) dv <0

i=A+1 j=1
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Proof of (x):

A A+B L'
Zv’ f (M = f') log(M') dv + Z Zv; f (M} — £) log(M;)) dv =
i=1 R3 ZA+1 =1 R3
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Proof of (x):

A+B L'

f (M = ) log(M') dv + Z Z f (M! — f) log(M)) dv =
i=A+1 j=1
A .
Z ’f (M=) [Iogn + = 3 m-= Iog(27rT) (|v|2 -20- v+|u|2)} dv
i=1

A+B L'

+ Zv]’f (M- 1)) [Iogn i 3pl3 Iog(27rT) T(|v|2 21 ~v+|G|2)] dv

i=A+1 j=1
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Proof of (x):
A+B L'

f (M = ) log(M') dv + ZZ f (M! — f) log(M)) dv =

IA+l]l
A

Z ’f (M=) [Iogn + = 3 m-= Iog(27rT) (|v|2 - 20 - v+|u|2)} dv
i=1
A+B LI

+ Zv;f (M- 1)) [Iogn i 3pl3 Iog(27rT) T(|v|2 21 ~v+|G|2)] dv

i=A+1 j=1

Owing to conservation laws, the contribution of monoatomic species
vanishes and the polyatomic one simplifies to

AZH:B i (n —n)[logn +T/I}

i=A+1 j=1
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Proof of (x):
A+B L'

f (M = ) log(M') dv + ZZ f (M! — f) log(M)) dv =

IA+l]l
A

Z ’f (M=) [Iogn + = 3 m-= Iog(27rT) (|v|2 - 20 - v+|u|2)} dv
i=1
A+B LI

+ Zv;f (Mi— 1) [Iogn i 3pl3 Iog(27rT) T(|v|2 20 - v +|0)

i=A+1 j=1

dv

Owing to conservation laws, the contribution of monoatomic species
vanishes and the polyatomic one simplifies to

AZH:B i (n —n)[logn +—}
i=A+1 j=1

This also vanishes since, bearing in mind the expression of ﬁ]’ the term
- E E Lo L El —El
loghl+ 2 = 2+ Iog(Z:v;1 njq) - Iog[Zv; exp(— %)]
T T h=1 h=1 T

does not depend on the subindex j and Z/ 1 /(n - n) 0 )
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Macroscopic equations

From our BGK model we derive evolution equations for species
densities, velocities, and temperatures
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Macroscopic equations

From our BGK model we derive evolution equations for species
densities, velocities, and temperatures

Monoatomic gases

a i

E‘FVX (nu) 0’

(ou' . . 1 . - .
n’(ﬁ+u’-VXu’)+WVX-P’:v’n’(ﬁ—u’),

3 (0T . . ,
_n(at +|J VX )+PI:VXuI+Vx‘qI

3 . .1 . .
=V |Z(T-Th+Zm' i -u'?|,
v [2( )+ m I]

i=1,...,A
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Polyatomic components

(’)n]’f i ifi i
EJ'VX'(”/'“/ =vj(nj—nj),

i au; i i 1 i e i
n; T +“/"qu/ +WVX-Pj=vjnj(u—u/—),
3 i aT/i i i i i i

- . 1 . .
— I ®i i Iy 12
_anj E(T—-rl-)+§m|u_ul-| 5

i=A+1,...,A+B, j=1,..., L'

M. Bisi, Parma
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Numerical tests

@ In space homogeneous conditions, macroscopic equations
constitute a closed system of 4(A + LA + ... + | A*B)
equations (auxiliary parameters are uniquely defined by the
actual ones)
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Numerical tests

@ In space homogeneous conditions, macroscopic equations
constitute a closed system of 4(A + LA + ... + | A*B)
equations (auxiliary parameters are uniquely defined by the
actual ones)

@ If we assign the initial values (n')o, (njf)o, (u’o, (U})o, (o,
(T)o , the corresponding collision equilibrium is uniquely
determined from conservation laws

Li g
] Z exp[ =

A+B L' A+B L'
U = Zm(n) o+ Zm<n>o<u,>o] [Zm(”)o+ > Zm(”)oJ

i=A+1 j=1 i=A+1 j=1

i, = (n')o, (n')M = Z (nh)o exp[

Tw is the unique solution of a proper transcendental equation G(Ty) =T
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Mixture of a monoatomic and a polyatomic gas

@ We consider a monoatomic gas G* and a polyatomic species G?
divided into three different components
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Mixture of a monoatomic and a polyatomic gas

@ We consider a monoatomic gas G* and a polyatomic species G?
divided into three different components

@ We take dimensionless values for initial data
L [ [calc]c]
Ny 10 8 6 7

Uy || 03| 0 | 01|04
To 2 4 1 2.5

for internal energies (E? = 5, E2 = 6, E2 = 9) and for collision
frequencies (depending on number densities)
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Mixture of a monoatomic and a polyatomic gas

@ We consider a monoatomic gas G* and a polyatomic species G?
divided into three different components

@ We take dimensionless values for initial data
L [ [calc]c]
Ny 10 8 6 7

Uy || 03| 0 | 01|04
To 2 4 1 2.5

for internal energies (E? = 5, E2 = 6, E2 = 9) and for collision
frequencies (depending on number densities)

@ We show plots relevant to disparate masses

@ (my, my) =(1,64.97) (mass ratio of Helium He / lodine
Heptafluoride IF;)
@ (my, my) = (111, 1) (mass ratio of Radon Rn / Hydrogen H,)
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Mixture of a monoatomic and a polyatomic gas

@ We consider a monoatomic gas G* and a polyatomic species G?
divided into three different components

@ We take dimensionless values for initial data
L [ [calc]c]
Ny 10 8 6 7

Uy || 03| 0 | 01|04
To 2 4 1 2.5

for internal energies (E? = 5, E2 = 6, £2 = 9) and for collision
frequencies (depending on number densities)

@ We show plots relevant to disparate masses

@ (my, my) =(1,64.97) (mass ratio of Helium He / lodine
Heptafluoride IF;)
@ (my, my) = (111, 1) (mass ratio of Radon Rn / Hydrogen H,)

@ Velocities and temperatures of the three components of G2 tend to
assume at first a common value and then they evolve together to
the global equilibrium
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Plots of the macroscopic fields

Densities Densities
10 10
/ /
0 ‘ A ‘ oo ‘ — ‘ ‘
0 0.1 0.2 tme g3 04| o0 0.1 v Io.zt_ Ime o3 0.4
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04 Velocities 04
02 0.2>7
0 — : o ; — ; :
0 0.1 02 fme g3 04| 0 0.1 02 tme o3 0.4
Temperatures Temperatures
4 4
2 2
0 - - - - . 0 . . - . .
@ 0 0.1 0.2 time 03 0.4]®) g 0.1 02 time g3 04

(ml, m2) = (1, 6497)

M. Bisi, Parma

(my, mz) = (111,1)
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Mixture of two polyatomic gases

The gas G* has has two internal energy levels and the gas G? has three
energy levels
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Mixture of two polyatomic gases

The gas G* has has two internal energy levels and the gas G? has three
energy levels

Test 1.

@ We take similar masses (my, my) = (1, 1.09) (mass ratio of Nitrous
Oxide N,O / Ozone O3), and initial data

L lTalalcglcglca]
o] 0] 98] 6] 7
W |[03]02] 0 |01]|04
To| 2 |35 4 | 1 |25
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Mixture of two polyatomic gases

The gas G* has has two internal energy levels and the gas G? has three
energy levels

Test 1.

@ We take similar masses (my, my) = (1, 1.09) (mass ratio of Nitrous
Oxide N,O / Ozone O3), and initial data

L lTalalcglcglca]
o] 0] 98] 6] 7
W |[03]02] 0 |01]|04
To| 2 |35 4 | 1 |25

@ We vary the values of energy levels
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Mixture of two polyatomic gases

The gas G* has has two internal energy levels and the gas G? has three
energy levels

Test 1.

@ We take similar masses (my, my) = (1, 1.09) (mass ratio of Nitrous
Oxide N,O / Ozone O3), and initial data

L lTalalcglcglca]
o] 0] 98] 6] 7
W |[03]02] 0 |01]|04
To| 2 |35 4 | 1 |25

@ We vary the values of energy levels

@ When there is a big gap between energy values of the same
species, there is also a big gap between equilibrium densities.
A high gap between internal energies causes a considerably higher
value for the final temperature (strongly affected by all the
differences E/? -E)
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Densities
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Test 2.

@ We take polyatomic gases with different masses
(m1, my) = (1,38.97) (mass ratio of Hydrogen H, | Arsine
AsHs), and energy levels of the same order of magnitude
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Test 2.

@ We take polyatomic gases with different masses
(m1, my) = (1,38.97) (mass ratio of Hydrogen H, | Arsine
AsHs), and energy levels of the same order of magnitude

@ We increase the initial velocities of the components
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Test 2.

@ We take polyatomic gases with different masses
(my, my) = (1,38.97) (mass ratio of Hydrogen H, | Arsine
AsHs), and energy levels of the same order of magnitude

@ We increase the initial velocities of the components

@ The trend to equilibrium for the heavy particles is usually
faster than for the light ones.
The temperatures trend to the steady value turns out to be
monotone for components of the gas with low velocities, while
an evident overshooting appears in the first stage of the
evolution of the faster components
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@ Derivation of consistent hydrodynamic equations from the
present BGK model, and investigation of physical
space—dependent problems (shock—wave solutions,
evaporation—condensation problems)
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@ Derivation of consistent hydrodynamic equations from the
present BGK model, and investigation of physical
space—dependent problems (shock—wave solutions,
evaporation—condensation problems)

@ BGK models for polyatomic (and reacting) gases involving
sums of relaxation operators, able to separate elastic and
inelastic collisions
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@ Derivation of consistent hydrodynamic equations from the
present BGK model, and investigation of physical
space—dependent problems (shock—wave solutions,
evaporation—condensation problems)

@ BGK models for polyatomic (and reacting) gases involving
sums of relaxation operators, able to separate elastic and
inelastic collisions

@ Kinetic models for polyatomic particles with the internal
energy separated into two different components, the
vibrational and the rotational ones
(since the gap between two subsequent discrete levels is much lower for
rotational energy than for vibrational energy, the rotational part could be
approximated by a continuous variable, keeping the vibrational part discrete)
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Thank you for your attention
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