Q SORBONNE
b UNIVERSITE

Mathematical and Numerical Study of a Dusty
Knudsen Gas Mixture

Frédérique Charles), Francesco Salvarani(®:3)

(1) LIJLL, Sorbonne Université, (2) Ceremade, Université Paris-Dauphine
(3) Dipartimento di Matematica, Universitd degli Studi di Pavia

INDAM Workshop, Rome, November 15th 2019

F. Charles 1/21



Description of the problem

Context

Moving dust particles in a rarefied
gas inside a Vessel such as in MEMs

Amol ~ 1 —100mm > L ~ 100um = kinetic approach

A possibility : consider a gas-particle mixture with adapted collisional
operators

o Here, we suppose that the number of dust is small and we follow them
individually
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Modelling

Motion of particles

o The behavior of the Ny particles is described by means of the Newton
laws of classical mechanics : translation + rotation.

o No influence of the gas on dust particles.
o We denote
&(t) Centers of particles
B.(&(t) ={x e R’ : ||z — &(t)|| < r}. Particles
It = UivzdlaBr(& (1)) Boundary of particles

i :Sup{t >0:Vs € [0,t],
Br(&(s)) N Br(&i(s)) =0

vj7 22177Nd7.]7él}
c(t, x) Velocity at o € T

Maximal time of non-
overlapping of particles
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Modelling

Description of the gas and boundaries
@ Knudsen gas : no collisions between gas molecules
o Container D € R!, [ =2, 3.
o Time T, which guarantee the non-exit of dust particles out of the domain

Ty =sup{t > 0:Vs € [0,¢], i%fD le —&(s)|| >r foralli=1,...,Ng}.
HAS

[na aD

Qt = D\ UN B, (&(1))

Nt =TtudbD
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Modelling

Boundary conditions
We suppose
o perfectly specular reflexion for the particles hitting 0D

o diffuse reflexion conditions for the interaction between gaseous particles
and dust, that is on I'.

o We assume that all particles have the same temperature of surface 7,
independant of the time.
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Description of the Model

Modelling

f(t,x,v) : density function in gas molecules

Boundary conditions

For z € 00!
f(ta Zz, U) = / k(t7 Z,0, ’U))f(t, z, w)dw 1{(vfc(t,a:))-nw<0}7
{(w=c(t,x))-na >0}

e Specular reflexion and ¢(¢,2) =0 on 0D :

E(t,z,v,w) = 6(w — v+ 2(v - ng)n,), x € 0D,

that is

flt,z,v) = f(t,z,v—2(v - ng)ng) forz € 0D, wv-n, <0.

F. Charles 6 /21



Modelling

Boundary conditions

f(t7 z, U) = / k(ta z,v, w)f(t7 &€, w)dw 1{(v—c(t,r))'nm<0}v
{(w=c(t,2)) ns >0}

o Diffuse reflexion on I'* :

2
k(t,a,0,w) = [ Z-Mr, (0 = oft,2)) (w = oft,2)),  a el
p
with
M = ! _% T,>0
TP(S) = W@ , P > 0.
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Modelling

Boundary conditions

f(ta €T, U) = / k(ta Z,0, w)f(tv x, w)dw 1{(v—c(t,z))-nz<0}7
{(w=c(t,x))-na>0}

o Flux normalization properties : Vo € 9,

/ k(t,z,v,w)Kvic(t’x)).nm|dv:1
{(v—c(t,2))-ns <0} (w—c(t,x)) - ny

and

/ k(t,z,v,w) M, (w — c(t,z))dw = Mz, (v — c(t, x))
{(w—c(t,x)) ns>0}
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The model

The time evolution of f is hence governed by the following PDE :

%H).mf:o (t,z,v) € (0,T) x Q' x R*

with 7' = min(7y, Ts),

e with normalized non-negative initial data

o fin(m,v) if (z,0) € Q0 x R
F0,2,0) = { 0 otherwise

where fi* € L>®(Q° x RY), HfinHLl(QOX]RZ) =1

e and boundary conditions :

ft,z,v) = / E(t,z,v,w) f(t, z, w)dw 1{y—ct,2))-n. <0}
{(w—c(t,x)) >0}
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Description of the Model

Extension of Darrozes-Guiraud’s Lemma

Lemma (Sonne)

For F stricly convex, f a solution of the previous system

— /Rl [v—c(t,z)] - na Mz, (v — c(t,x))F (M) (v)dv <0

In particular for F(s) = s% we get

Jv—c(t,x)|?

—/ [v—c(t,z)] - nge 2T f2(v)dv <0
Rl

Proof

Jensen inequality and properties of the kernel k
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Existence result

Existence result

Theorem

Let ¢ € L>((0,T) x Q) and let f > 0 for a.e. (z,v) € Q° x R?, such that

L2
e T fin € L°(Q° x RY). Then there exists one non-negative weak solution
f € L>((0,T) x O x RY) of the initial-boundary value problem.

Backward interaction time
The backward interaction time Tq:(z,v) for a particle starting from = € Qf in
the direction v € R, is defined as

Toi(z,v) =inf{f >0 : x—Ove T U aD}.

If the set © := {0 >0 : = —0v € "YU 9D} is empty, then To:(z,v) = +oo.

v
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Existence result

Existence result

Strategy of the proof

o Consider the auxiliary problem for the function g : Rt x Qf x R = R

%—H}'Vzgzo, (t,z,v) € RT x Qf x RY,

g(O,x,v) = fin(xvv)l{QOXR[}(xvv)
g(t,z,v) = (¢, z,v) for a.e. € 90, (v —c(t,x)) n, <0

where ® € L>((0,T) x (09" x R")). The problem has a unique weak
solution, given by

g(ta x, U) = fin(x — vt, U)I{Tﬂt (z,v)>t} + (p(ta 'T*7 U)I{Tﬂt (z,v)<t}>

where x* = z — 7ot (2, v)v, and

9]l Lo (0,1 x 02t xrey < max{ || || oo (o xrey 5 1@ Low ((0,7) x (802 xR1)) }-
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Existence result

Existence result

Strategy of the proof

e We now construct a sequence { fy, }nen, such that
fi(t,z,v) =0 for a.e. (t,z,v) € [0,T) x QF x R

and, for all n € N, n > 2, f, is the solution of the previous problem with
the boundary condition : for z € 9Q¢ :

fn(tv T, ’U) = / k(t’ T,v, w)fn,1(t, Zz, w)dw 1{(v7c(t,z))-nx<0}a
{(w—c(t,x))-ns 20}
o Then we can proove that for a.e. (t,x,v) € (0,T) x Qf x R},

o2
0< fu <Clf"e™ | Lo (qoxr)

ho = fox1— fn >0 for a.e. (t,z,v) € (0,T) x O x R,

F. Charles 13 /21



Numerical simulations

Numerical strategy

Particle method
f(t",-,-) is approached by

N,

fan,Nm(xav):Zwkgos(x_Xl?)@s(v_an)’ (1)
k=1

(X7)1<k<n,, and are the positions of the "numerical molecules" at time
t",

(Vi¥)1<k<n,, are their velocities

wy, their weight,

@ . a smooth shape function.

Initially (X2)1<k<n,, and (V!)1<k<n,, are sampled according to the
initial density f™(x,v).
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Numerical simulations

Numerical strategy

At each time step
We compute

o the free flow of the particles in the absence of any interaction,
mathematically represented by the transport operator v - V;

o the time evolution of the set of dust particles.
e the boundary conditions

> the specular reflexion of the gas particles at the boundary 9D ;

> the diffuse reflexion between gas particles and spherical dust particles by
computing the intersection of the trajectories of molecules and dust
particles.

> Iteration in the time [¢",t" + At] to obtain positions and velocities of
molecules at time "
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Numerical simulations

Numerical results

Physical quantities

m|v—ug|?

in _ nom T 2kgTin
i ay0) = e
with ug = (—2u4,0) or ug = (0,0).
A K, Tn My ug=abl,
2.10%m 10 293K 0.1 3441 m/s

Ins

aD

Particles :
o radius r = 107 %m
o T, =500 K.

F’
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Numerical results

Scenario 1

Evolution of a system of two particles with translational velocities u; = (0, uq)
and up = (0, —1.5u4), with ug = 2u™, and no rotational velocities.
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Density at time ¢t = 5- 107 (here with periodic BC)
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Numerical simulations

Numerical results

Scenario 2

Time evolution of the mean temperature of the gas with a motionless particle
(T(t)) = / T(t,z)dx
Qt

Evolution of the kinetic temperature of the gas

S———

450

&=
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Temperature T
w
&
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300

time t w104
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Numerical simulations

Numerical results

Scenario 3

Time evolution of the mean temperature of the gas with a motionless particle
at temperature 7T, = 100 K.

Evolution of the kinetic temperature of the gas
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Numerical results
Scenario 4
Time evolution of the mean temperature of the gas with a particle at

temperature T, = 100 K ; the spherical dust particle has a rotational velocity
equal to 2m x 10% rad. s~1.

Evolution of the kinetic temperature of the gas

= = scenario 3 (without rotational velocity)

= scenario 4 (with rotational velocity)

Temperature
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Numerical simulations

Futur prospects

o Addition of the evolution of temperature in dust particles

o Numerical simulations with an ellipsoidal dust, with more particles...
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