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Sone's Half-Space Pbm with Condensation/Evaporation
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Figure: Interface liquid temperature T, saturating vapor pressure p,,
As z — 400, the gas distribution function converges to a Maxwellian
with temperature T, pressure p, and bulk velocity (0, 0, u)
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Sone's Half-Space Problem

Unknown distribution function F = F(z, v) satisfying

VZaZF(Z7V):C(F)(Zvv)7 Z>Oa V€R3
F(0,v) =My, 071, (v), v; >0
F(z,v) = Mp u1.(V), zZ — 400

Maxwellians

2 2 2
L P Vx+vy+(V2_u)
Mp,u,7(v) = WGXP <— 5T

Boltzmann collision integral for hard spheres denoted C(F)(z, v)

[ (Fe R~ FeF (v - w) - wldede
R3xS2

where Vi=v—(v—w)ww, Ve i=viet (Vv — v - ww
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Figure: A solution to Sone's half-space problem exists iff the parameters
(Too/ Tw, —U/Coos Poo/Pw) lie on the curve C in the evaporation case
(0 < u < 1) and, in the condensation case (0 < —u < 1), lie on the

surface S. Here ¢y = 1/%7'00 = speed of sound as z — +o0
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Perturbation Setting

Smallness assumption |po/pw — 1| + |t/ coo| + | Too/ Tw — 1| < 1
WLOG assume p = Too = 1 and set M(§) := M11(&);

F(z,v):=M(E)(1+f(z,8), &:=v—(0,0,u)
with symmetry f(z,&, &y, &) =1F(z, —&x, =&y, &2)

Sone’s half-space problem becomes

{(£Z+u)a (2, v) + LF(2,€) = Q(F)(z,€), z>0, €cR3

F(0,6) = Mol — 1 fore, > —u,  lim f(2,6) =0

with the notation

Lf =—M71DC(M)-(MFf), Q(f) = M~1C(MF)
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Main Result: Extending the Evaporation Curve

Thm There exists €, E,v* > 0 such that, for all p,,, u, T, satisfying

‘Pw_1‘+’u’+|7—w_1‘<€

the half-space problem has a unique solution f, that is even in &, &,
and decays exponentially as z — 400 uniformly in |u] < €

(1 + [€)*VMEy(z, )l < Ee™* forall 0 <y <"

iff f, .= Mo, —u 1.,/ M — 1 satisfies the two compatibility conditions

/R3(52+U)Y1[u]( )95{ [fb]( ) ( )dﬁ—o
/R3(€Z + u) Yo [u](E) R[] (E)M(€)dE =0
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The Linearized Collision Operator £

Notation § := {f € L?>(Md¢) even in &, &y} and (¢) =[5 OMdE

Lemma [Hilbert 1912] The operator L is self-adjoint, nonnegative
and Fredholm on L2(Md¢) with

Dom(L) = L2((1 + [§])MdE), Ker £ $ = span{1,&,, €%}

$-orthonormal basis of Ker £ N ), orthogonal for (¢) — (£,6)

24 z — 2—
Xiz%7 Xo:‘gj/rsa (€X2) =+1/3, (&X0) =0

Bardos-Caflisch-Nicolaenko spectral gap for some kg > 0

g € Dom(£) N (Ker£)© = (gLg) > ro((1+ [¢])g%)
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The Nicolaenko-Thurber Generalized Eigenvalue Problem

NT-GEPbm find ¢, € $§ N Dom(L) so that

E¢u(§) = 7—u(éz + U)Qbu, <(fz + U)¢3> = —u

Prop There exists r > 0 and a C¥ map of solns to the NT-GEPbm

(=r,r) 2 u (14,04) € Rx (HNDom(L))
sup (1 + [E) VMol < G < o0

|ul<r

One has 0 < |u| < r = ur, < 0 and moreover

bu=Xo+ uh,, T, =uig+ O(u?) with 7o <0
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A Good Reason for Studying ¢,. ..

The function ®,(z,£) := e ™%¢, () solves Sone's linearized pbm
(fz + U)az(bu(za 5) + £¢(Z7§) =0

and
0< kKl = oy(x,¢) = O(exp(—% u||7o|2)

condensation

exponentially small = admissible

0<+tukl = exp(—l—%u|¢'0|z) = O0(Pu(x,&))

evaporation

unbounded = not admissible

Conclusion NT-GEPbm defines a smooth branch of slowly varying
(i.e. depending on ¢ = |u|z) solutions to the linearized Boltzmann
equation admissible only for u < 0 (i.e. in the condensation case)
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Step 1: Penalize £ [Ukai-Yang-Yu CMP2003]

For «, 3, > 0, define the penalized, linearized collision integral

LPg = Lg+ (& + u)gX) Xy — B{(&z + u)bug)bu — V(&2 +u)g

Then f solves Sone's pbm with exponential decay v > |u7,| > 0 iff

e?f(z,&) = g(z,&) — h(z)ou(§)

satisfies

(§tu)0.g+LPg=e " (Q+(du@)(§U)Yu)
h(z) = —e ™ / 20 (4, Q)(z + y)dy
0

with
§) — h(z )%(5))

Q(z,6) = Q(g(z,
)= ((E2+u)ug) =

((€z+u)eXy)
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Step 2: Compute the penalization (=unwanted terms)

Observe that

d Ay Ap Ay ((E4u)Xsgy)
= Ao |+(A—~1) | Ao |=0 Ao |:=| ((§-tu)Xogy)
B B B (Ertu)tbugy)

For |u| < r' < r, the spectrum of A, satisfies

A1(u) > Aa(u) > 0> A3(u), inf  Xo(u) >0> sup A3(u)
ul<r!

0<ul 0<|ul<r!

Let u+ (E1(u), Ex(u), E3(u)) be a C¥ basis of R s.t.
ATE(u) = M(u)E(u), k=1,2,3, 0<|ul </

Since A\3(u) < 7, then
LOO(R+) = (AJrvAOv B)(Z)T B3 = (A+,A0, B)(O)T - E3 e<7_>‘3)z
— (A4, A0, B)(0)-E3 =0 = (Ay, Ay, B)(2) - E3
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Step 3: Removing the penalization

Set

Yi[ul(€) = Ej(u) T - (X4(€), Xo(&), vu(€)), j=1.2

Choosing v so that Ax(u) >~ > 0 for 0 < |u| < r’, one has

0 =(Ay, Ao, B)(2)"-E; = {(&+u)Y;[ulg) (0)e0 )2
= (&, 4+ u)Yi[ulg)(0)=0  forj=1,2
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Step 4. Why penalizing L?

Lemma There exists R, k1 > 0s.t. forall 0 < a=8=2y <2l
and all |u| < R, the penalized linearized collision integral

Epg =Lg+ 05<(£z + u)gX+>X+ - 5((52 + u)wug>¢u - '7({2 + u)g
satisfies g € Dom(£)N$H = (gLPg) > r1v((1 + |£])g?)

With this lemma, one solves the penalized 1/2-space problem in the
near M-equilibrium regime for |u| < 1, for ALL (small) data f,

This defines g(0, ) := R, [fp] uniquely. The compatibility condition
to remove the penalization is then

((€z + u)Yj[ulRu[f])(0) =0 forj=1,2
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Conclusion

e Thm confirms numerical results obtained in the Kyoto school (Sone
[1978], Sone+Aoki, Doi, Ohwada, Sugimoto, Takata 1980-2000)

eStronger result (including proof of positivity of F) obtained earlier
by T.-P. Liu-S.-H. Yu [ARMA2009], using the Green function for the

linearized Boltzmann equation

eThm above uses only classical energy estimates with filtering of
slowly varying modes based on the Nicolaenko-Thurber GEPbm

eDo the compatibility conditions so obtained define a C! curve —
i.e. does the Implicit Function Theorem apply?
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