Half-Space Problems for the Boltzmann Equation with Phase Transition at the Boundary

François Golse

École polytechnique, CMLS

Workshop "Recent Advances in Kinetic Theory and Applications" Rome, INDAM, November 15th 2019

Work with N. Bernhoff arXiv:1909.00034[math.AP]

Sone's Half-Space Pbm with Condensation/Evaporation

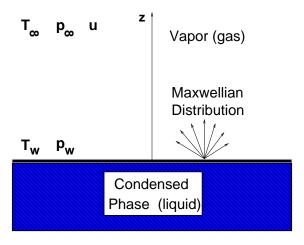


Figure: Interface liquid temperature T_w , saturating vapor pressure p_w As $z \to +\infty$, the gas distribution function converges to a Maxwellian with temperature T_∞ , pressure p_∞ and bulk velocity (0,0,u)

Sone's Half-Space Problem

Unknown distribution function $F \equiv F(z, v)$ satisfying

$$\begin{cases} v_z \partial_z F(z,v) = \mathcal{C}(F)(z,v)\,, & z>0\,,\ v\in \mathsf{R}^3\\ F(0,v) = \mathcal{M}_{p_w,0,T_w}(v)\,, & v_z>0\\ F(z,v) \to \mathcal{M}_{p_\infty,u,T_\infty}(v)\,, & z\to +\infty \end{cases}$$

Maxwellians

$$\mathcal{M}_{p,u,T}(v) := \frac{p}{(2\pi)^{3/2} T^{5/2}} \exp\left(-\frac{v_x^2 + v_y^2 + (v_z - u)^2}{2T}\right)$$

Boltzmann collision integral for hard spheres denoted C(F)(z, v)

$$\iint_{\mathbf{R}^3 \times \mathbf{S}^2} (F(z, v') F(z, v'_*) - F(z, v) F(z, v_*)) | (v - v_*) \cdot \omega | dv_* d\omega$$
 where
$$v' := v - (v - v_*) \cdot \omega \omega, \qquad v'_* := v_* + (v - v_*) \cdot \omega \omega$$

Sone's Diagram

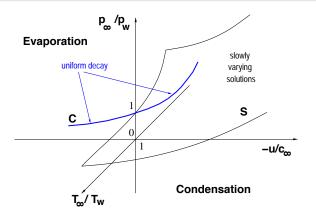


Figure: A solution to Sone's half-space problem exists iff the parameters $(T_{\infty}/T_w, -u/c_{\infty}, p_{\infty}/p_w)$ lie on the curve C in the evaporation case $(0 < u \ll 1)$ and, in the condensation case $(0 < -u \ll 1)$, lie on the surface S. Here $c_{\infty} := \sqrt{\frac{5}{3}T_{\infty}} = \text{speed of sound as } z \to +\infty$

Perturbation Setting

Smallness assumption $|p_{\infty}/p_w - 1| + |u/c_{\infty}| + |T_{\infty}/T_w - 1| \ll 1$

WLOG assume
$$p_{\infty} = T_{\infty} = 1$$
 and set $M(\xi) := \mathcal{M}_{1,0,1}(\xi)$;

$$F(z, v) := M(\xi)(1 + f(z, \xi)), \quad \xi := v - (0, 0, u)$$

with symmetry $f(z, \xi_x, \xi_y, \xi_z) = f(z, -\xi_x, -\xi_y, \xi_z)$

Sone's half-space problem becomes

$$\begin{cases} (\xi_z + u)\partial_z f(z, v) + \mathcal{L}f(z, \xi) = \mathcal{Q}(f)(z, \xi), & z > 0, \quad \xi \in \mathbf{R}^3 \\ f(0, \xi) = \frac{\mathcal{M}_{p_w, -u, T_w}(\xi)}{M(\xi)} - 1 & \text{for } \xi_z > -u, & \lim_{z \to \infty} f(z, \xi) = 0 \end{cases}$$

with the notation

$$\mathcal{L}f = -M^{-1}D\mathcal{C}(M) \cdot (Mf), \quad \mathcal{Q}(f) = M^{-1}\mathcal{C}(Mf)$$

Main Result: Extending the Evaporation Curve

Thm There exists $\epsilon, E, \gamma^* > 0$ such that, for all p_w, u, T_w satisfying

$$|p_w - 1| + |u| + |T_w - 1| < \epsilon$$

the half-space problem has a unique solution f_u that is even in ξ_x, ξ_y and decays exponentially as $z \to +\infty$ uniformly in $|u| < \epsilon$

$$\|(1+|\xi|)^3 \sqrt{M} f_u(z,\cdot)\|_{L^\infty_\xi} \leq E e^{-\gamma z} \quad \text{ for all } 0 < \gamma < \gamma^*$$

iff $f_b := \mathcal{M}_{p_w,-u,T_w}/M-1$ satisfies the two compatibility conditions

$$\int_{\mathbf{R}^{3}} (\xi_{z} + u) Y_{1}[u](\xi) \mathfrak{R}_{u}[f_{b}](\xi) M(\xi) d\xi = 0$$
$$\int_{\mathbf{R}^{3}} (\xi_{z} + u) Y_{2}[u](\xi) \mathfrak{R}_{u}[f_{b}](\xi) M(\xi) d\xi = 0$$

The Linearized Collision Operator \mathcal{L}

Notation $\mathfrak{H} := \{ f \in L^2(Md\xi) \text{ even in } \xi_x, \xi_y \}$ and $\langle \phi \rangle := \int_{\mathbb{R}^3} \phi Md\xi$

Lemma [Hilbert 1912] The operator \mathcal{L} is self-adjoint, nonnegative and Fredholm on $L^2(Md\xi)$ with

$$\mathsf{Dom}(\mathcal{L}) = L^2((1+|\xi|)\mathsf{Md}\xi)\,,\quad \mathsf{Ker}\,\mathcal{L}\cap\mathfrak{H} = \mathsf{span}\{1,\xi_z,|\xi|^2\}$$

 \mathfrak{H} -orthonormal basis of Ker $\mathcal{L} \cap \mathfrak{H}$, orthogonal for $(\phi \psi) \mapsto \langle \xi_z \phi \psi \rangle$

$$X_{\pm} \equiv rac{|\xi|^2 \pm \sqrt{15} \xi_z}{\sqrt{30}} \,, \quad X_0 \equiv rac{|\xi|^2 - 5}{\sqrt{10}} \,, \quad \langle \xi_z X_{\pm}^2
angle = \pm \sqrt{rac{5}{3}} \,, \quad \langle \xi_z X_0
angle = 0$$

Bardos-Caflisch-Nicolaenko spectral gap for some $\kappa_0 > 0$

$$g \in \mathsf{Dom}(\mathcal{L}) \cap (\mathsf{Ker}\,\mathcal{L})^{\perp} \implies \langle g\mathcal{L}g \rangle \geq \kappa_0 \langle (1+|\xi|)g^2 \rangle$$

The Nicolaenko-Thurber Generalized Eigenvalue Problem

NT-GEPbm find $\phi_u \in \mathfrak{H} \cap \mathsf{Dom}(\mathcal{L})$ so that

$$\mathcal{L}\phi_u(\xi) = \tau_u(\xi_z + u)\phi_u$$
, $\langle (\xi_z + u)\phi_u^2 \rangle = -u$

Prop There exists r>0 and a C^{ω} map of solns to the NT-GEPbm

$$(-r,r)\ni u\mapsto (\tau_u,\phi_u)\in \mathbf{R}\times (\mathfrak{H}\cap\mathsf{Dom}(\mathcal{L}))$$

$$\sup_{|u|< r}\|(1+|\xi|)^s\sqrt{M}\phi_u\|_{L^\infty_\xi}\leq C_s<\infty$$

One has $0 < |u| < r \implies u\tau_u < 0$ and moreover

$$\phi_u = X_0 + u\psi_u$$
, $\tau_u = u\dot{\tau}_0 + O(u^2)$ with $\dot{\tau}_0 < 0$

A Good Reason for Studying ϕ_u ...

The function $\Phi_u(z,\xi) := e^{-\tau_u z} \phi_u(\xi)$ solves Sone's linearized pbm

$$(\xi_z + u)\partial_z \Phi_u(z,\xi) + \mathcal{L}\Phi(z,\xi) = 0$$

and

$$\underbrace{0 < -u \ll 1}_{\text{condensation}} \implies \underbrace{\Phi_u(x,\xi) = O(\exp(-\frac{1}{2}|u||\dot{\tau}_0|z)}_{\text{exponentially small} \implies \textit{admissible}}$$

$$\underbrace{0 < +u \ll 1}_{\text{evaporation}} \implies \underbrace{\exp(+\frac{1}{2}u|\dot{\tau}_0|z) = O(\Phi_u(x,\xi))}_{\text{unbounded} \implies \text{not admissible}}$$

Conclusion NT-GEPbm defines a smooth branch of slowly varying (i.e. depending on $\zeta = |u|z$) solutions to the linearized Boltzmann equation admissible only for u < 0 (i.e. in the condensation case)

Step 1: Penalize \mathcal{L} [Ukai-Yang-Yu CMP2003]

For $\alpha, \beta, \gamma > 0$, define the penalized, linearized collision integral

$$\mathcal{L}^{p}g := \mathcal{L}g + \alpha \langle (\xi_{z} + u)gX_{+} \rangle X_{+} - \beta \langle (\xi_{z} + u)\psi_{u}g \rangle \phi_{u} - \gamma (\xi_{z} + u)g$$

Then f solves Sone's pbm with exponential decay $\gamma > |u\tau_u| > 0$ iff

$$e^{\gamma z} f(z,\xi) \equiv g(z,\xi) - h(z)\phi_u(\xi)$$

satisfies

$$\begin{cases} (\xi_z + u)\partial_z g + \mathcal{L}^p g = e^{-\gamma z} (Q + \langle \phi_u Q \rangle (\xi_z + u)\psi_u) \\ h(z) = -e^{-\gamma z} \int_0^\infty e^{(\tau_u - 2\gamma)y} \langle \psi_u Q \rangle (z + y) dy \end{cases}$$

with

$$Q(z,\xi) = Q(g(z,\xi) - h(z)\phi_u(\xi))$$
$$\langle (\xi_z + u)gX_+ \rangle \rangle = \langle (\xi_z + u)\psi_u g \rangle = 0$$

Step 2: Compute the penalization (=unwanted terms)

Observe that

$$\frac{d}{dz} \begin{pmatrix} A_{+} \\ A_{0} \\ B \end{pmatrix} + (A_{u} - \gamma I) \begin{pmatrix} A_{+} \\ A_{0} \\ B \end{pmatrix} = 0 \qquad \begin{pmatrix} A_{+} \\ A_{0} \\ B \end{pmatrix} := \begin{pmatrix} \langle (\xi_{z} + u)X_{+}g_{\gamma} \rangle \\ \langle (\xi_{z} + u)X_{0}g_{\gamma} \rangle \\ \langle (\xi_{z} + u)\psi_{u}g_{\gamma} \rangle \end{pmatrix}$$

For |u| < r' < r, the spectrum of A_u satisfies

$$\lambda_1(u) > \lambda_2(u) > 0 > \lambda_3(u), \quad \inf_{0 < |u| < r'} \lambda_2(u) > 0 > \sup_{0 < |u| < r'} \lambda_3(u)$$

Let $u \mapsto (E_1(u), E_2(u), E_3(u))$ be a C^{ω} basis of \mathbb{R}^3 s.t.

$$A_u^T E_k(u) = \lambda_k(u) E_k(u), \quad k = 1, 2, 3, \quad 0 < |u| < r'$$

Since $\lambda_3(u) < \gamma$, then

$$L^{\infty}(\mathbf{R}_{+}) \ni (A_{+}, A_{0}, B)(z)^{T} \cdot E_{3} = (A_{+}, A_{0}, B)(0)^{T} \cdot E_{3} e^{(\gamma - \lambda_{3})z}$$

$$\implies (A_{+}, A_{0}, B)(0)^{T} \cdot E_{3} = 0 = (A_{+}, A_{0}, B)(z)^{T} \cdot E_{3}$$

Step 3: Removing the penalization

Set

$$Y_j[u](\xi) := E_j(u)^T \cdot (X_+(\xi), X_0(\xi), \psi_u(\xi)), \quad j = 1, 2$$

Choosing γ so that $\lambda_2(u) > \gamma > 0$ for 0 < |u| < r', one has

$$0 = (A_+, A_0, B)(z)^T \cdot E_j = \langle (\xi_z + u) Y_j[u] g \rangle (0) e^{(\gamma - \lambda_j) z}$$

$$\iff \langle (\xi_z + u) Y_j[u] g \rangle (0) = 0 \quad \text{for } j = 1, 2$$

Step 4: Why penalizing \mathcal{L} ?

Lemma There exists $R, \Gamma, \kappa_1 > 0$ s.t. for all $0 < \alpha = \beta = 2\gamma < 2\Gamma$ and all |u| < R, the penalized linearized collision integral

$$\mathcal{L}^{p}g := \mathcal{L}g + \alpha \langle (\xi_{z} + u)gX_{+} \rangle X_{+} - \beta \langle (\xi_{z} + u)\psi_{u}g \rangle \phi_{u} - \gamma(\xi_{z} + u)g$$
satisfies $g \in \mathsf{Dom}(\mathcal{L}) \cap \mathfrak{H} \implies \langle g\mathcal{L}^{p}g \rangle \geq \kappa_{1}\gamma \langle (1 + |\xi|)g^{2} \rangle$

With this lemma, one solves the penalized 1/2-space problem in the near M-equilibrium regime for $|u|\ll 1$, for ALL (small) data f_b

This defines $g(0,\cdot):=\mathfrak{R}_u[f_b]$ uniquely. The compatibility condition to remove the penalization is then

$$\langle (\xi_z + u) Y_i [u] \mathfrak{R}_u [f_b] \rangle (0) = 0$$
 for $j = 1, 2$

Conclusion

- •Thm confirms numerical results obtained in the Kyoto school (Sone [1978], Sone+Aoki, Doi, Ohwada, Sugimoto, Takata 1980-2000)
- •Stronger result (including proof of positivity of F) obtained earlier by T.-P. Liu-S.-H. Yu [ARMA2009], using the Green function for the linearized Boltzmann equation
- •Thm above uses only classical energy estimates with filtering of slowly varying modes based on the Nicolaenko-Thurber GEPbm
- ullet Do the compatibility conditions so obtained define a C^1 curve i.e. does the Implicit Function Theorem apply?