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The Smoluchowski coagulation equation

The Smoluchowski equation

∂t f (t , x) =
1
2

∫ x

0
f (t , x − y)f (t , y)K (y , x − y) dy

−
∫ ∞

0
f (t , x)f (t , y)K (x , y) dy .

f (t , x): density of clusters with size x > 0 at time t ≥ 0.
K (x , y) ≥ 0: coagulation rate of clusters of sizes x and y ,

symmetric in x , y . We always assume K (x , y)
bounded for our results.

Shorter: ∂t f = C(f , f ).

Mass =

∫ ∞
0

x f (t , x) dx is conserved.
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Long-time behaviour

Moments: Mk :=

∫ ∞
0

xk f (t , x) dx .

1 Mk with k > 1 is increasing;
2 Mk with k < 1 is decreasing.

Solutions converge to 0, since they concentrate in larger and
larger sizes. Is there a universal behaviour?

If K (x , y) is homogeneous of degree λ, a suitable rescaling
gives

∂tg = 2g + x∂xg + C(g,g) Self-similar
Smoluchowski equation

(Similar as for the heat equation / Fokker-Planck.)
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∂tg = 2g + x∂xg + C(g,g) Self-similar
Smoluchowski equation

The cases K (x , y) = 1 or x + y or xy are explicitly solvable
[Menon & Pego]
Existence of self-similar profiles [Escobedo & Mischler],
[Fournier & Laurençot]
Exponential convergence to self-similarity in explicit cases
[Cañizo, Mischler & Mouhot (2010)], [Srinivasan
(2011)].
Infinite-mass profiles [Niethammer, Velázquez]
Uniqueness of profiles [Laurençot], [Niethammer, Throm
& Velázquez]

Can we prove universal behaviour? — Scaling hypothesis
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Similar problems

The underlying problem is universal behaviour out of
equilibrium. We may use these strategies:

1 Explicit solutions
2 Entropies
3 Perturbation arguments

Several settings:
1 Smoluchowski [Menon & Pego], [C., Mischler & Mouhot]
2 Inelastic Boltzmann

[Mischler & Mouhot], [& Rodríguez Ricard],
[Carrillo & Toscani]

3 Boltzmann + diffusion [Mischler & Mouhot],
Inelastic Boltzmann + background [Bisi, C. & Lods (2011)],
[C. & Lods (2016)]

4 Boltzmann + thermal reservoirs at boundary
[Carlen, Esposito, Lebowitz, Marra & Mouhot]
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Assumptions

K (x , y) = 2 + εW (x , y).
|W (x , y)| ≤ 1, homogeneous of degree 0.

Theorem (C. & Throm, 2019)

if Mk (0) < +∞ for some k > 2 and ε > 0 small enough,
1 there is a unique self-similar profile Gε for the kernel K ,
2 and for all solutions with mass 1 we have

‖g(t , ·)−Gε‖L1
k
≤ Ce−λt‖g0 −Gε‖L1

k
,

where C ≥ 1 depends only on ‖g0 −Gε‖L1
k
.
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Main strategy

In order to carry out the perturbation around the constant
kernel, we need:

1 A good understanding of the limiting case.
2 A good understanding of the linearised operator, in a

suitable space.
3 Continuity with respect to ε, in some sense.

Notice that the perturbed coagulation operator

Cε(f , f ) := 2 + εCW (f , f )

is a bounded perturbation of the constant kernel, in the norms
L1

k :

‖f‖L1
k
:=

∫ ∞
0

(1 + x)k |f (x)| dx .
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Understanding the constant case

The following was proved in [C., Mischler & Mouhot], with some
further details in the recent paper with Throm:

Lemma
Solutions g to the the self-similar Smoluchowski equation with
constant kernel a ≡ 2 satisfy

‖g −G‖2 ≤ Ce−
1
2 t ,

where C depends only on ‖g0‖2, ‖g0‖L1
2
.

There are also exponential convergence results by Srinivasan
in W−1,∞ norms.
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Which norm do we need to use?

1 We need fast convergence to equilibrium of the constant
kernel case in this norm.

2 We need a spectral gap in this norm for the linearised
operator.

3 We need an estimate like

‖C(f , f )‖ ≤ ‖f‖1+θ‖f‖1−θ∗ ,

with a norm ‖f‖∗ that can be bounded uniformly in time.
The easiest is

‖CK (f ,g)‖L1
k
≤ 3

2
‖K‖∞‖f‖L1

k
‖g‖L1

k

This is where restrictions come from!
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The linearised operator

Lh := 2h + x∂xh + C(h,G) + C(G,h).

Theorem

This operator has a spectral gap in all spaces L1
k with k > 2:

‖h(t , ·)‖L1
k
≤ Ce−λt‖h0‖L1

k
for all h0 with

∫
xh0 = 0 (mass 0).

In [C. Mischler & Mouhot] we proved a spectral gap in
H−1(eµx).

In order to obtain the theorem we can use the spectral gap
extension / restriction results in [Gualdani, Mischler & Mouhot].
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Sketch of proof: exponential convergence

1 First, show that the linearised operator Lε has a spectral
gap. Easy for a bounded perturbation.

2 Show exponential convergence to equilibrium, locally.
3 We can then use the global behaviour of the constant

kernel case to extend this result to arbitrarily large regions.
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Write the equation with a Taylor expansion of C(g,g):

∂tg = ∂t(g −Gε) = Lε(g −Gε) + Cε(g −Gε,g −Gε)

Call h := g −Gε. By Duhamel / variation of constants:

ht = etLεh0 +

∫ t

0
e(t−s)LCε(hs,hs) ds.

Then

‖ht‖ ≤Ce−λt‖h0‖+
∫ t

0
e−λ(t−s)‖Cε(hs,hs)‖ ds

≤Ce−λt‖h0‖+ K
∫ t

0
e−λ(t−s)‖hs‖2 ds,

hence convergence happens locally around G.
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Thanks for listening!
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