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Université d’Orsay

joint with Camille Laurent, CNRS Sorbonne Université
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Motivation

Usual Riemannian setting:

• M compact connected manifold,

• g Riemannian metric on M,

• dVolg Riemannian density (volume form)  Lp = Lp(M, dVolg )

• −∆g = − divg (∇g ·) Laplace operator, selfadjoint in L2

• Ellipticity
∑

i,j g
ij(x)ξiξj ≥ c0|ξ|2, with c0 > 0.

• Eigenvalues/eigenfunctions: 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λj → +∞,
−∆gϕj = λjϕj .

Main example:

• M = Td

• g = Eucl

• dVolg = dx Lebesgue measure

• −∆ = −(∂2
x1

+ · · ·+ ∂2
xd )

• Family of vector fields: ∂x1 , · · · , ∂xd , with span(∂x1 , · · · , ∂xd ) = Rd

Relax the ellipticity condition g ijξiξj ≥ c0|ξ|2, with c0 > 0?

What if g vanishes at some points, in some directions?
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Typical unique continuation results: Riemannian setting

Theorem (Holmgren, Carleman, Calderón)

An eigenfunction ϕj of ∆g never vanishes identically on an open set ω 6= ∅.

Theorem (Donnelly-Fefferman 1988, Lebeau-Robbiano 95)

Assume ω ⊂M, ω 6= ∅. Then ‖ϕj‖L2(M) ≤ Ceκ
√
λj ‖ϕj‖L2(ω)

 ‖ϕj‖L2(ω) & e−κ
√
λj for normalized eigenfunctions.

 Optimal in general.

Relax the ellipticity condition g ijξiξj ≥ c0|ξ|2, with c0 > 0?

What if g vanishes at some points, in some directions?
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Typical approximate controllability result: Riemannian setting
Heat equation controlled from ω:{

(∂t −∆g )u = 1ωf , in (0,T )×M,
u(0) = 0, in M.

(1)

• Exact controllability: find f so that u(T ) = u1 ∈ L2?

 not possible in general  smoothing properties of the heat equation

• Approximate controllability: find f so that u(T ) ≈ u1?

Theorem (Fernández-Cara-Zuazua 2000, Phung 2004)

Fix T > 0. For any ε > 0, u1 ∈ L2(M), there is f ∈ L2((0,T )× ω) with

‖f ‖L2((0,T )×ω) ≤ Ce
c
ε ‖u1‖L2(M) ,

s.t. the solution of (1) satisfies

‖u(T )− u1‖H−1(M) ≤ ε ‖u1‖L2(M) .

Relax the ellipticity condition g ijξiξj ≥ c0|ξ|2, with c0 > 0?

What if g vanishes at some points, in some directions?
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Sub-Riemannian/hypoelliptic setting

• M compact connected manifold

• ds a density on M, L2 = L2(M, ds)

• m vector fields X1, · · · ,Xm

• Type I Hörmander operator

L =
m∑
i=1

X ∗i Xi .

Here
∫
M X ∗(u)v ds =

∫
M uX (v) ds ! X ∗ = −X − divds(X )

• Formally symmetric nonnegative, L = − divds(∇SR ·)

Examples in dimension d = 2, M = T2 = [−1, 1)2, ds = dx1dx2:

• Elliptic operator: X1 = ∂x1 , X2 = ∂x2 =⇒ L = −(∂2
x1

+ ∂2
x2

) is elliptic.

• Grushin operator:

X1 = ∂x1 , X2 = x1∂x2 =⇒ L = −
(
∂2
x1

+ x2
1∂

2
x2

)
• p-Grushin operators:

X1 = ∂x1 , X2 = xp
1 ∂x2 =⇒ Lp = −

(
∂2
x1

+ x2p
1 ∂2

x2

)
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Definition
with F = (X1, · · · ,Xm) set Lie`(F ):

• Lie1(F )(x) = span(X1(x), · · · ,Xm(x)) ,

• Lie`+1(F ) = span
(
Lie`(F ) ∪

{
[X ,Xj ];X ∈ Lie`(F), j = 1, · · · ,m

})
.

Assumption (Chow-Rashevski-Hörmander)

• ∃` ≥ 1 so that for any x ∈M, Lie`(X1, · · · ,Xm)(x) = TxM.

• set k := the minimal `.

Examples:

• Elliptic operator: X1 = ∂x1 and X2 = ∂x2  k = 1

• Grushin operator: X1 = ∂x1 and X2 = x1∂x2  k = 2
since [∂x1 , x1∂x2 ] = ∂x2

• p-Grushin operators: X1 = ∂x1 and X2 = xp
1 ∂x2  k = p + 1
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Theorem (Chow-Rashevski, 1938)

Assume Chow-Rashevski-Hörmander condition. For any x0, x1 ∈M, there is a
curve [0, 1]→M, t 7→ γ(t) such that

• γ(0) = x0 and γ(1) = x1

• γ is always tangent to span(X1, · · · ,Xm)

Theorem (Hörmander 1967, Rothschild-Stein 1976)

Assume Chow-Rashevski-Hörmander condition.

• The operator L is hypoelliptic: ∀u ∈ D ′(M), x0 ∈M

Lu ∈ C∞ near x0 =⇒ u ∈ C∞ near x0.

• The operator L is subelliptic of order 1
k

:

‖u‖
H

2
k (M)

. ‖Lu‖L2(M) + ‖u‖L2(M)

Examples:

• Elliptic operators  k = 1: ‖u‖H2(M) . ‖Lu‖L2(M) + ‖u‖L2(M)

• Grushin operator  k = 2: ‖u‖H1(M) . ‖Lu‖L2(M) + ‖u‖L2(M)

• p-Grushin operators Lp = −
(
∂2
x1

+ x2p
1 ∂2

x2

)
 k = p + 1

‖u‖
H

2
p+1 (M)

. ‖Lu‖L2(M) + ‖u‖L2(M)
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Properties of L:

L : D(L) ⊂ L2(M)→ L2(M),

• subelliptic estimates =⇒ H2(M) ⊂ D(L) ⊂ H
2
k (M)

 L is selfadjoint on L2(M), with compact resolvent

 Hilbert basis of eigenfunctions (ϕj)j∈N, real eigenvalues (λj)j∈N

Lϕi = λiϕi , (ϕi , ϕj)L2(M) = δij , 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λj → +∞.

 ϕj ∈ C∞(M).

 Well-posedness of hypoelliptic wave and heat equations
(∂2

t + L)v = f and (∂t + L)u = f
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Assumption (Analyticity)

The manifold M, the density ds, and the vector fields Xi are real-analytic.

 the Chow-Rashevski-Hörmander is necessary for attainability/hypoellipticity.
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Theorem (Bony 1969)

An eigenfunction ϕj of L never vanishes identically on an open set ω 6= ∅.

Theorem
Let ω ⊂M, ω 6= ∅. Then, for normalized eigenfunctions:

‖ϕj‖L2(ω) ≥ Ce
−cλ

k/2
j

• False in general without the analyticity assumption (Bahouri 1986).

Proposition (Csq of Beauchard-Cannarsa-Guglielmi 2017)

For the p-Grushin examples, there are ω 6= ∅ and (λj , ϕj)
eigenvalues/eigenfunctions of Lp s.t.

‖ϕj‖L2(ω) ≤ Ce
−c0λ

k/2
j , k = p + 1.
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hypoelliptic heat equation: controllability

Sobolev norms:

‖u‖Hs
L

=
∥∥∥(1 + L)

s
2 u
∥∥∥
L2(M)

, s ∈ R.

Hypoelliptic heat equation controlled from ω:{
(∂t + L)u = 1ωf , in (0,T )×M,

u(0) = 0, in M.
(2)

Approximate controllability: drive the solution to u(T ) ≈ u1?

Corollary (Approximate controllability and its cost)

Fix T > 0. For any ε > 0, u1 ∈ L2(M), there is f ∈ L2((0,T )× ω)

with

‖f ‖L2((0,T )×ω) ≤ Ce
c
εk ‖u1‖L2(M) ,

s.t. the solution of (2) satisfies

‖u(T )− u1‖H−1
L
≤ ε ‖u1‖L2(M) .
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Fix T > 0. For any ε > 0, u1 ∈ L2(M), there is f ∈ L2((0,T )× ω) with

‖f ‖L2((0,T )×ω) ≤ Ce
c
εk ‖u1‖L2(M) ,

s.t. the solution of (2) satisfies

‖u(T )− u1‖H−1
L
≤ ε ‖u1‖L2(M) .
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hypoelliptic heat equation: observability

Hypoelliptic free heat equation:{
∂ty + Ly = 0, in (0,T )×M,

y(0) = y0 in M,

Theorem (Approximate observability)

For all T > 0, there are C , c > 0 s.t. for all y0 ∈ H1
L, for all ε > 0

‖y0‖2
L2 ≤ Ce

c
εk

∫ T

0

‖y(t)‖2
L2(ω)dt + ε2 ‖y0‖2

H1
L
,
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About the proofs

Theorem (Approximate observability)

For all T > 0, there are C , c > 0 s.t. for all y0 ∈ H1
L, for all µ large

‖y0‖2
L2 ≤ Ceµ

k
∫ T

0

‖e−tLy0‖2
L2(ω)dt +

1

µ2
‖y0‖2

H1
L
,

4 main steps/ingredients:

1. Quantitative Unique Continuation for ∂2
t + L (hypoelliptic wave equation)

 Laurent-L. 2015-2019

2. A (sub-Riemmanian) geometric construction
 Rifford-Trélat 2005

3. Subelliptic estimates (Hs norms ! Hs
L norms)

 Rotschild-Stein 1976

4. From ∂2
t + L (waves) to L − λj (eigenfunctions) or ∂t + L (heat):

transmutation
 Ervedoza-Zuazua 2011
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The proofs: Quantitative Unique Continuation

• Global UC statements ← local UC results + geometric constructions.

Local (near x0) UC result across {φ = 0} 3 x0 for P = p(x ,Dx):(
Pu = 0 near x0, u = 0 in {φ > 0}

) ?
=⇒ u = 0 near x0.

Holmgren-John (1949)

• analytic coefficients

• φ non characteristic for P:
p(x0, dφ(x0)) 6= 0

Carleman-Hörmander (1960)

• C∞ (even C 1) coefficients

• φ pseudoconvex for P:
{p, {p, φ}}(x0, ξ) > 0
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Quantitative Carleman-Hörmander theorem

Usual Hörmander theorem: 3 steps:

1. Carleman estimates:∥∥∥eτψv∥∥∥
L2
.
∥∥∥eτψPv∥∥∥

L2
, for all τ ≥ τ0,

v compactly supported near x0. Here, ψ = convexification of φ.

2. Apply it with v = χu where Pu = 0, χ→ levelsets of ψ. Yields (µ = τ)

‖u‖V2
. eκµ ‖u‖V1

+ e−κ
′µ ‖u‖︸ ︷︷ ︸

expo. small remainder

3. propagates very well (Bahouri 87, Robbiano 95, Lebeau-Robbiano 95):

‖u‖L2(K) . eκµ ‖u‖H1(ω̃) + e−κ
′µ ‖u‖H1︸ ︷︷ ︸

expo. small remainder

, Pu = 0.
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Quantitative Holmgren-John theorem
(Tataru-Robbiano-Zuily-Hörmander spirit)

• A Carleman estimate “localized in ξ = 0”∥∥∥e− ε
2τ
|D|2eτψv

∥∥∥ . ∥∥∥e− ε
2τ
|D|2eτψPv

∥∥∥ + e−τd
∥∥∥eτψv∥∥∥ , τ ≥ τ0

• Apply it with v = χu, χ→ levelsets of ψ. Yields (Pu = 0)∥∥∥e− ε
2τ
|D|2eτψχu

∥∥∥ . eκτ ‖u‖V1
+ e−δτ ‖u‖ for all τ ≥ τ0.

• Complex analysis in the τ variable  Local estimate

‖u‖V2
≤ eκµ ‖u‖V1

+
C

µ
‖u‖︸ ︷︷ ︸

not so small remainder

.

PROBLEM: does not propagate well  ee
ee
....eµ

• Solution! propagate low frequencies only: with m ∈ C∞c (R):∥∥∥∥m( |D|µ
)
χV2u

∥∥∥∥ ≤ Ceκµ
∥∥∥∥m( |D|µ

)
χV1u

∥∥∥∥ + C e−κ
′µ ‖u‖︸ ︷︷ ︸

expo. small remainder

,

for all µ ≥ µ0 and u ∈ C∞c (Rn).

• PROBLEM: Commutators
[
m
(
|D|
µ

)
, χ(x)

]
are of order µ−∞ → too bad

• Solution! analytic cutoff functions!
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Thank you

THANK YOU FOR YOUR ATTENTION!
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