
The diffusive limit for

Carleman-type kinetic models

Francesco Salvarani
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Abstract

We study the limiting behavior of the Cauchy problem for a class of Carleman-like models
in the diffusive scaling with data in the spaces Lp, 1 ≤ p ≤ ∞. We show that, in the limit,
the solution of such models converges towards the solution of a nonlinear diffusion equation
with initial values determined by the data of the hyperbolic system. When the data belong
to L1, a condition of conservation of mass is needed to uniquely identify the solution in some
cases, whereas the solution may disappear in the limit in other cases.

1 Introduction

We consider a class of one-dimensional models for a gas composed of two kinds of particles moving
parallel to the x-axis with constant and equal speeds, of modulus c > 0, one in the positive x-
direction with density u(x, t), the other in the negative x-direction with density v(x, t). A general
version of such a model has the following form:

(1)


∂u

∂t
+ c

∂u

∂x
= k(u, v, x)(v − u)

∂v

∂t
− c∂v

∂x
= k(u, v, x)(u− v),

where u = u(x, t), v = v(x, t), x ∈ Ω ⊆ R, t ≥ 0, and k(u, v, x) is a nonnegative function, called
the interaction rate (also rate function or rate coefficient), that characterizes the interactions
between gas particles. The model is in local equilibrium when u = v, a situation that will be
obtained in the limit as we will see.

We devote our main effort to the case Ω = R with some comments on the application to
bounded Ω with Neumann (specular) boundary conditions.

The case k(u, v, x) = u+v was introduced by Carleman in the 1930’s as a simplified model of
the Boltzmann equation [3], and has been subsequently studied by many authors (for a survey
on the mathematical theory of these models see, for example, [16]).

The variables can be easily scaled in such a way that (1) is reduced to the form

(2)


∂uε
∂t

+
1
ε

∂uε
∂x

=
1
ε2
k(uε, vε, x)(vε − uε)

∂vε
∂t
− 1
ε

∂vε
∂x

=
1
ε2
k(uε, vε, x)(uε − vε) x ∈ Ω ⊆ R, t ≥ 0,
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with parameter ε > 0. This scaling is particularly interesting because the limit ε → 0+ (called
hydrodynamical limit) leads, at least formally, to diffusive type equations which can be viewed
as the Navier-Stokes equations of the ficticious gas. Hence the name of diffusive scaling. Note
that the speed 1/ε→∞.

The process is as follows: we introduce two macroscopic variables, the mass density ρε and
the flux jε defined by

(3) ρε = uε + vε, jε =
1
ε

(uε − vε).

In the typical case when the rate has the form kα(uε, vε, x) = (uε+vε)α, most considered in the
literature, System (2) is equivalent to the following macroscopic equations for the mass density
and the flux

(4)


∂ρε
∂t

+
∂jε
∂x

= 0

ε2
∂jε
∂t

+
∂ρε
∂x

= −2ραε jε,

posed in (x, t) ∈ Ω × (0, T ) with initial data for density and flux, ρε(x, 0) = u0(x) + v0(x)
and jε(x, 0) = (u0(x) − v0(x))/ε. If we are now allowed to disregard the term ε2 ∂jε/∂t in
the limit ε → 0, we formally obtain the following nonlinear heat equation for the limit density
ρ = limε→0 ρε:

(5)
∂ρ

∂t
=

1
2
∂

∂x

(
1
ρα

∂ρ

∂x

)
,

with initial conditions ρ(x, 0) = u0(x) + v0(x). This is called the diffusive limit. Much more
general forms of the rate function k can be admitted in the study of this limit process (a set of
convenient assumptions on k will be stated and discussed below). For such general k the factor
ρα in System (4) must be replaced by

fε(x, t) = k((ρε + εjε)/2 , (ρε − εjε)/2 , x).

Assuming that in the limit εjε → 0, the denominator ρα in the limit equation (5) becomes
k(ρ/2, ρ/2, x).

An interesting mathematical problem is posed, i.e., justifying this limit process for different
choices of α (or, more generally, the function k) and under suitable assumptions on the data.
It has been the object of a number of papers, which give information on the convergence of
ρε = uε + vε as ε→ 0+ to a function ρ(x, t), solution of the nonlinear diffusive process.

The study has been done specially in the model cases kα(uε, vε, x) = (uε+vε)α. When α = 0
we obtain in a rather easy way the solutions of the standard diffusive process, the heat equation
(the situation is a bit more involved in the case of the initial-boundary value problem, see [20]).

When α = 1 (which corresponds to the Carleman model) and under a number of conditions
of the data, the asymptotic theory in the whole space has been analysed by Kurtz [9] and
McKean [13], whereas Fitzgibbon [7] studied the problem in a bounded domain, with specular
boundary conditions. Subsequently, Pulvirenti and Toscani [17] have extended the theory in the
case α ∈ [0, 1), in the framework of C1 data, whereas Lions and Toscani [11] have solved the
case α ∈ (−∞, 1), with more general integrable data. We are strongly inspired by this work.
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Here are the main novelties introduced in our paper: a new mathematical approach allows
to weaken the regularity hypotheses on the data; we merely assume that the data u0 and v0
belong to the natural space L1

+(R) without additional, unphysical restrictions; we recover the
theory for α ∈ [−1, 1); we also include the limit case α = 1 where the diffusive limit does not
have uniqueness of solutions, and we characterize our limit as the unique maximal solution, see
Theorem 12. We also explore the supercritical range α > 1, and show a new qualitative result:
for α ≥ 2 for integrable data u0, v0 ∈ L1(R), the hydrodynamical limit is trivial, ρ = 0. Finally,
the theory for other problems or other types of data is briefly discussed. In particular, for |α| ≤ 1
a theory is constructed with data in L1 + L∞(R) which includes all spaces Lp(R), 2 ≤ p ≤ ∞.

A strategy for very general systems of kind (2) has been proposed by Marcati and Rubino
[12]. However, in their paper k is not allowed to vanish and the target equation is not degenerate.
We finally mention that another remarkable paper, which studies the same kind of problems,
has been very recently written by Donatelli and Marcati [5]. In that paper, the authors study
a very general nonlinear pseudo-differential system, in the framework of L2 initial data. Their
results complement but do not overlap our work.

2 Description of the main results of the paper

We want to contribute to the theory of the diffusive limit for the above models. Our main
interest is to develop a theory that applies to all nonnegative data in the typical functional
spaces Lp(Ω), 1 ≤ p ≤ ∞, and to include interaction rates k of type kα(uε, vε, x) = (uε + vε)α

for different values of α ∈ R.

(i) We devote a first effort to develop the theory when k does not vanish (more precisely, for
all regular k’s, in the sense defined in the next section). This is done in Sections 3 to 5 and
culminates in Theorem 3, where we prove the convergence of the solutions (uε, vε) of System (2)
to the diffusive limit under the assumptions that the data u0ε, v0ε are nonnegative and uniformly
bounded (in L∞(R)), and converge locally weakly to functions u0, v0. Actually, we show that
the limit ρ = limε→0(uε + vε) solves the nonlinear diffusion equation

(6)
∂ρ

∂t
=

∂

∂x

(
D(ρ)

∂ρ

∂x

)
,

a generalization of (5) with diffusivity D(ρ) = 1/(2k(ρ/2, ρ/2, x)). Besides, ρ(x, t) takes initial
data ρ0 = u0 + v0.

(ii) The main analytical problem of these models lies in the fact that k often vanishes or becomes
infinite, as in kα for α 6= 0. The previous approach justifies the diffusive limit even for these
rates if the initial data satisfy the conditions 0 < δ ≤ u0, v0 ≤ M , since then δ ≤ uε, vε ≤ M
and kα is regular on the range of values of the solutions for all α.

For general solutions u, v ≥ 0 our strategy consists in avoiding the difficulty in a first stage
by regularizing the problem, so that k does not vanish on the range of the solutions. This can
be done in different ways. The simplest one in our opinion is based on lifting the initial data
and defining

(7) u0δ(x) = u0(x) + δ, v0δ(x) = v0(x) + δ.

We are then faced with the problem of solving System (2) with lifted data. By writing

(8) uε = ūε + δ, vε = v̄ε + δ,
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we transform solving System (2) for (uε, vε) with lifted data (u0δ, u0δ), into the an equivalent
system for (ūε, v̄ε) with initial data u0, v0 and rate k̄ defined by k̄(u, v, x) = k(u + δ, v + δ, x).
When applied to the typical kα = (u + v)α, the change allows to assume the new interaction
rate does not vanish. It is shown that k̄α = (u + v + 2δ)α has all the properties required to
develop a good theory, both in L1 and in L∞. These properties are listed in Definitions 1 and
following.

For general data in L1(R) we still have to pass to the limit δ → 0+ to recover the solutions
of the original problem. The idea is to pass to the limit along subsequences ε→ 0+, δ → 0+ to
obtain a function

ρ(x, t) = lim
ε,δ→0+

ρε,δ(x, t)

which solves the diffusion equation and takes on the initial data. Such a program can be
performed for the rates k = kα under three conditions: (a) the exponent satisfies α < 2; (b) the
limit is taken along special sequences (ε, δ)→ (0, 0) such that δ is not too small with respect to
ε; and (c) data belong to L1 ∩ L∞. The precise result is formulated in Theorems 7 and 8.

The appearance of the exponent α = 2 reflects the properties of the target equation. We
recall that the diffusive equation with α > 0 falls into the class of fast diffusion equations. It is
known that existence or uniqueness may fail for certain ranges of α. Thus, for α ≥ 2 the diffusive
limit breaks down in the sense that, for data ρ0 = u0 + v0 ∈ L1

+(R) the target equation (5) does
not admit solutions with finite mass, see [21] and its references. Indeed, the limit of the solutions
ρδ of the target equation with lifted data vanishes uniformly on sets of the form t ≥ τ > 0. We
show that the hydrodynamical limit, taken along suitable sequences (ε, δ) → (0, 0), behaves in
the same vanishing way. It means that for α ≥ 2 the diffusive scaling we are using is too slow
and does not allow to see anything significant for large times.

(iii) A much finer theory can be developed in the range |α| ≤ 1 where we show that the
functional setting corresponds to dissipative operators, see Section 7 and Appendix I. This is a
typical property of nonlinear diffusion equations of the types dealt with here, and it implies that
the equations generated semigroups of contractions in the corresponding functional space, here
L1

+(R). Applying this concept with data in that space, we prove the convergence result to the
diffusive limit eliminating all additional conditions on the data of previous works. The result is
precisely stated in Theorem 12, and can be briefly stated as follows:

Theorem A Let |α| ≤ 1. The semigroups Sε,α generated by the hyperbolic system acting on
X = L1

+(R) converge as ε → 0+ towards Sα, the semigroup generated by the target equation.
Convergence takes place in the typical semigroup topology C([0,∞);L1(R)).

We recall that existence and uniqueness of nonnegative solutions of the Cauchy problem for
the target equation is guaranteed for α < 1, but it does not hold for α ≥ 1 if the data are
integrable. Indeed, for 1 ≤ α < 2 the problem with (nontrivial) integrable initial data ρ0 ∈
L1(R), ρ0 ≥ 0, admits infinitely many smooth solutions ρ ∈ C([0, T ];L1(R)) ∩ C∞(R × [0, T ]),
[6, 18, 19]. Our limit selects the maximal one, which exists for all times t > 0 and is characterized
by the property of mass conservation:∫

R
ρ(x, t) dx =

∫
R
ρ0(x) dx ∀t > 0.

In our proof we use heavily the fact that the semigroup is order-preserving and L1-contractive
whenever |α| ≤ 1, mimicking similar properties of the diffusive problem.

In the case α ∈ [1, 2) the diffusive equation is still contractive for maximal solutions in L1.
However, for α > 1 the hyperbolic semigroup is neither contractive nor order-preserving, but
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only ω-dissipative with a bad dependence of ω on ε (see Appendix I). This is the reason why
we are only able to pass to the limit in a very special way for α > 1. Further investigation is in
progress in this range.

(iv) Extensions: it is also known that the diffusive equation can be solved in the fast diffusion
range with data ρ0 in the much wider class L1

loc(R). In that direction, we first show that the
hyperbolic system can be solved in the same class using the concept of mild solutions. We also
show that the diffusive limit can be justified for |α| ≤ 1 when the data belong to the class
L1(R) +L∞(R), which includes Lp(R) for all p ≤ 1. This is done as an easy extension of the L1

and L∞ theories.
Another interesting variant consists in taking as base space a finite interval, say I = (−R,R).

We can solve for System (2) with Neumann conditions ux + vx = 0 at the lateral boundaries
x = ±R, t > 0 (also known as mass preserving or specular conditions). We can then re-do
the L∞ theory for regular k’s and the L1 theory for kα, |α| ≤ 1, with no major changes, thus
establishing the diffusive limit of the hyperbolic system.

One immediate application of the last result is the diffusive limit in R with L1-periodic initial
data.

Outline. The paper is organized as follows: in the next section we collect many preliminary
results on the hyperbolic model. Section 3 is then devoted to establish local estimates. We pass
to the limit for regular k in Section 4, and we make a general discussion of the rates kα for
α > 0 in Section 5. Section 6 discusses dissipative rate functions and prepares the way for the
complete proof of the diffusive limit for −1 ≤ α ≤ 1 in Section 7. The extensions are given in
Section 8. An Appendix collects together some results about dissipativity, operators and the
corresponding semigroups, whereas another one gives the technical proof of control of solutions
in spaces with weights. This result is needed to control the decay of solutions at infinity.

3 Preliminaries

This section is devoted to recall some basic definitions as well as global existence and uniqueness
results for the semilinear System (2), plus needed a priori estimates.

Let us begin by reviewing some notations. All data u0, v0 and solutions u, v in the paper
are nonnegative. This means that ρ ≥ 0, but j can have any sign. Equality of, or inequalities
between integrable functions are understood in the almost everywhere sense (a.e.). The following
usual notation will be adopted. For any function f = f(x, t), we define its positive part f+ by
f+(x, t) = f(x, t) if f(x, t) ≥ 0, and f+(x, t) = 0 otherwise. We also define f−(x) = (−f)+, so
that

f+ =
|f |+ f

2
, f− =

|f | − f
2

.

We define the functions sign (s) = 1 if s > 0, sign (s) = −1 if s < 0 and sign (s) = 0 for s = 0;
sign +(s) = 1 if s > 0, sign +(s) = 0 if s ≤ 0; and sign−(s) = −1 if s < 0, sign−(s) = 0 if s ≥ 0.
We have sign (s) = sign +(s) + sign−(s).

Moreover, for every smooth (or at least W 1,1
loc ) function f(x, t) we have a.e. ∂|f |/∂t =

sign (f) (∂f/∂t), as well as

∂f+(x, t)/∂t = sign +(f) (∂f/∂t), ∂f−(x, t)/∂t = sign−(f) (∂f/∂t).

We will often abbreviate for convenience a function u(x, t) as u, or even u(t) if only the t-
dependence is meant.

5



We discuss next the interaction rates. In many of the arguments of the paper the interaction
rate k need not be a power function, but we always assume that it satisfies some basic properties
that we list next.

Definition 1 We say that k(u, v, x) is an admissible interaction rate if:

R1. k is a measurable real function defined for u, v ≥ 0 and x ∈ R;

R2. for every λ > 0 there exists M = M(λ) > 0 such that 1/M ≤ k(u, v, x) ≤ M for all
1/λ ≤ u, v ≤ λ, and x ∈ R.

These minimal conditions are used in the literature, cf. e.g. [11]. They will be always
assumed throughout the work and are satisfied by the typical rate functions k = (u+ v)α for all
α. They have to be strengthened in some developments as follows.

Definition 2 We say that k is a regular interaction rate if it is admissible and

R3. k(u, v, x) is continuous as a function of u and v for a.e. x. Moreover, the function
k(u, v, x)(v − u) is uniformly Lipschitz continuous as a function of u and v for bounded
values of these arguments;

R4. for every λ > 0 there exist M = M(λ) and N = N(λ) > 0 such that N ≤ k(u, v, x) ≤ M
for all x ∈ R and 0 ≤ u, v ≤ λ;

It is easy to check that for the choice k = kα = (u+ v)α, Conditions R1 and R2 hold, R3 is
satisfied for α ≥ 0 and R4 is only satisfied for α = 0. All are satisfied when kα is replaced by
k̄(u, v, x) = kα(u+ δ, v + δ, x), δ > 0.

Another property that plays a role is dissipativity.

Definition 3 We say that an admissible rate k is dissipative (resp., ω-dissipative) if for every
a1, a2, b2, b2 ∈ R and a.e. x ∈ R

(k1 (b1 − a1)− k2 (b2 − a2)) ( sign [a1 − a2]− sign [b1 − b2]) ≤ 0,

with k1 = k(a1, b1, x), k2 = k2(a2, b2, x); resp.

(k1 (b1 − a1)− k2 (b2 − a2))( sign [a1 − a2]− sign [b1 − b2]) ≤ ω(|a1 − a2|+ |b1 − b2|).

This definition is motivated by the contractivity estimates, see Section 7, and has a functional
framework that is discussed in Appendix I. It is shown there that, for power functions k =
(u+ v)α, k is dissipative if |α| ≤ 1. When α > 1 it is only ω-dissipative for some ω that depends
unfortunately on ε and does not allow to pass to the limit in the obtained estimates. If we replace
sign by sign + in the formulas written above, we arrive at the concept of T -dissipativity, that
is connected with comparison and will be surveyed later.

We address now the concept of weak solution, as well as existence and properties. We use
the notation QT = R× (0, T ), for some T > 0. If T =∞ we write Q = R× (0,∞).

Definition 4 For given initial conditions u0(x), v0(x) ∈ L1(R) ∩ L∞(R), we define a weak
solution of System (2) as a pair of functions (u, v) ∈ C([0, T ] : Lp(R)) ∩ L∞(QT ), T > 0, for
any 1 ≤ p < ∞, such that the equation is satisfied in the sense of distributions and the initial
data are recovered in the sense of traces as t→ 0.
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We shall refer to weak solutions simply as solutions if no confusion is to be feared. Solutions
are defined for 0 < t < T . If T = ∞ we say that the solution is global (in time). Note that u
and v are continuous functions of t with values in a function space.

As a starting point we state an existence and uniqueness result. Lions and Toscani [11]
prove, in a slightly more general form, the following theorem:

Theorem 1 Let 0 ≤ u0(x), v0(x) ∈ L1(R) ∩ L∞(R) and k be admissible. Then the initial value
problem for System (2) admits a unique global weak solution

uε(x, t), vε(x, t) ∈ L∞(Q) ∩ C ([0,∞);Lp(R)) .

These solutions enjoy a number of important properties; the following a-priori estimates are
proved in [11]:

Lemma 1 Let us suppose that (uε(x, t), vε(x, t)) is the solution of System (2), with non-negative
initial data uε(x, 0) = u0(x), vε(x, 0) = v0(x) ∈ L1(R) ∩ L∞(R). Then, for any regular convex
function ϕ(r), r ≥ 0, we have

(9)
∫

R
[ϕ(uε(x, t)) + ϕ(vε(x, t))] dx ≤

∫
R

[ϕ(u0(x)) + ϕ(v0(x))] dx.

In particular, by choosing ϕ(r) = r, we obtain the conservation of mass:

(10)
∫

R
[uε(x, t) + vε(x, t)] dx =

∫
R

[u0(x) + v0(x)] dx.

Remark By taking ϕ(r) = rp for all p ≥ 1, we obtain the boundedness of any Lp-norm∫
R

[u(x, t)p + v(x, t)p] dx ≤
∫

R
[u0(x)p + v0(x)p] dx.

Moreover, when p→ +∞, the lemma implies also the useful L∞ bound:

(11) uε(x, t), vε(x, t) ≤ max {‖u0‖∞, ‖v0‖∞} .

Complete order (Maximum Principle) will only be obtained later, under suitable conditions on
the rate k.

For a particular choice of ϕ we also find an estimate of jε, which is called entropy estimate.

Lemma 2 Let (uε, vε) be the solution of System (2), with initial data u0(x), v0(x) ∈ L1∩L∞(R),
u0(x), v0(x) ≥ 0. Then there exists a constant c1 = c1(u0, v0) such that

(12)
∫ T

0

∫
R
j2ε (x, t)

k(uε, vε, x)
(1 + uε)(1 + vε)

dxdt ≤ c1.

Proof: We multiply the two equations of System (2) by ϕ(uε) and ϕ(vε) respectively, where
ϕ(r) = 1/(r + 1), for r ≥ 0. Adding the obtained equations and integrating on R we get

d

dt

∫
R

[log(uε + 1) + log(vε + 1)] dx =
∫

R
k(uε, vε, x)

vε − uε
ε2

vε − uε
(vε + 1)(uε + 1)

dx.
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Since the second member of the previous equation is nonnegative, we prove that∫
R

[log(uε(x, t) + 1) + log(vε(x, t) + 1)] dx

is a non-decreasing functional for System (2). By introducing the macroscopic quantities ρε =
(uε + vε) and jε = (uε − vε)/ε, and using that log(r + 1) ≤ r, this proves that

0 ≤
∫ T

0

∫
R
j2ε (x, t)

k(uε, vε, x)
(1 + uε)(1 + vε)

dxdt ≤
∫

R
[log(uε(x, T ) + 1) + log(vε(x, T ) + 1)] dx ≤

∫
R

[u(x, T ) + v(x, T )] dx =
∫

R
[u0(x) + v0(x)] dx,

using in the last line the conservation of mass. �

The factor k/(1 +uε)(1 + vε) can be eliminated from (12) under suitable assumptions to get
a clean estimate of j2. Indeed, if we take into account that uε and vε are of class L∞(R) and
are nonnegative, and if k is bounded below by a certain constant N then

k(uε, vε, x)
(vε + 1)(uε + 1)

≥ N

(‖ρ0‖∞ + 1)2
,

so that

(13)
∫ T

0

∫
R
j2(x, t) dxdt ≤ (‖ρ0‖∞ + 1)2

N

∫
R

[u0(x) + v0(x)] dx.

4 The hyperbolic system with locally bounded data

In this section we start our generalization of the conditions on the data by taking initial con-
ditions u0(x), v0(x) ∈ L∞loc(R) and constructing unique locally bounded solutions. Our analysis
is based on the remark that the solutions of System (2) propagate along characteristics with
speeds ±1/ε.

We will assume k to be an admissible rate function satisfying also the Lipschitz continuity
condition R3. We have a dependence result in local L∞ norm that justifies introducing the
following generalized concept of solution.

Definition 5 A weak solution of System (2) with locally bounded initial data u0, v0 ≥ 0 is a pair
of functions (u, v) ∈ C([0, T ] : L1

loc(R)) ∩ L∞loc(QT ), T > 0, such that the equation is satisfied in
the sense of distributions and the initial data are recovered in the sense of traces.

The following property holds:

Lemma 3 Under the above assumptions on k, any weak solution is uniquely determined on an
interval A = (a, b) at a time t > 0 by the initial values taken on a larger interval

(14) A0 = (a− (t/ε), b+ (t/ε)).
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Proof: It is an easy consequence of the finite propagation speed for a semilinear hyperbolic
system. �

This result is very convenient because it means that we can construct solutions with locally
bounded data, since the values that a weak solution takes in a shrinking region Γ depend only
on the data in the initial interval [a(0), b(0)].

Proposition 2 Let 0 ≤ u0(x), v0(x) ∈ L∞loc(R) and k be as above. Then the initial value problem
for System (2) admits a unique solution uε(x, t), vε(x, t) ∈ C ([0,∞);L∞loc(R)).

Proof: The most natural construction is as follows. For every n ∈ N fixed, we take truncated
initial conditions pair (u0,n(x), v0,n(x)) given by

u0,n(x) =
{
u0(x) x ∈ [−n, n]
0 otherwise

v0,n(x) =
{
v0(x) x ∈ [−n, n]
0 otherwise

Thanks to Theorem 1, there exists a unique solution (uε,n(x, t), vε,n(x, t)) with those data. Given
an interval (−r, r) and a time T > 0 all the solutions with n ≥ r + (T/ε) coincide in the region
R = (−r, r)× (0, T ). Therefore, the limit

lim
n→∞

uε,n(x, t) = uε(x, t), lim
n→∞

vε,n(x, t) = vε(x, t),

is well defined, locally bounded and a weak solution in the sense of our present definition. �

Remark Actually, we have proved that, from the point of view of local estimates, we can always
assume that our initial data and solutions are compactly supported with respect to the space
variable. This gives immediately local versions of the a priori estimates of Section 3, Lemmas 1
and 2. In Lemma 1 there is now the option that infinite mass is conserved. We ask the reader
to check the easy details.

Uniform estimates

All these local estimates have a problem, namely that the region of dependence shrinks in time
with speed 1/ε, hence they are useless when passing to the limit ε → 0. There is a way of
obtaining ε-uniform estimates that we indicate next.

Lemma 4 Let uε and vε be the solutions of System (2), with initial data u0(x), v0(x) ∈ L∞loc(R),
u0(x), v0(x) ≥ 0. Let k be admissible. Then for every test function φ ∈ C∞0 (R), φ ≥ 0 there
exists a constant c1 = c1(u0, v0, φ) such that the solution of System (2) admits the following
bound:

(15)
∫ T

0

∫
R
j2ε (x, t)k2(uε, vε, x)φ2(x) dxdt ≤ c1.

Proof: It is modification of the proof of Lemma 2. We multiply the two equations of System
(2) by ϕ(uε) and ϕ(vε) respectively, where ϕ(r) = 1/(r + 1), for r ≥ 0, and both by the square
of φ(x). Adding the obtained equations and integrating we get

d

dt

∫
R

[log(uε + 1) + log(vε + 1)]φ2(x) dx =
2
ε

∫
R

log
(
uε + 1
vε + 1

)
φ(x)φ(x)x dx+

9



∫
R
k(uε, vε, x)

vε − uε
ε2

vε − uε
(vε + 1)(uε + 1)

φ2(x) dx.

Since u, v ≥ 0, then for all t > 0∫
R

[log(uε(x, t) + 1) + log(vε(x, t) + 1)]φ(x)2 dx ≥ 0.

We also have

k(uε, vε, x)
vε − uε
ε2

vε − uε
(vε + 1)(uε + 1)

φ2 ≥ j2εk
2
ε

M(vε + 1)(uε + 1)
φ2,

where M is the supremum of kε. The new term in φx is treated as follows. Assume that at a
certain point uε ≥ vε. Then

0 ≤ 1
ε

log
(
uε + 1
vε + 1

)
≤ jε

1 + vε
.

For any γ > 0 we can now write

2
ε

log
(
uε + 1
vε + 1

)
φφx ≤ γ

j2εk
2
εφ

2

N2(1 + vε)(1 + uε)
+

1
γ

(1 + uε)
(1 + vε)

φ2
x,

where kε = k(uε, vε, x) and N is the infimum of kε. Similarly when uε ≤ vε. Putting all together
with γ = N2/(2M) and integrating in t we get∫ ∫

QT

j2εk
2
εφ

2

(1 + vε)(1 + uε)
dxdt ≤ C1

∫ ∫
QT

φ2
x dxdt+

C2

∫
R

[log(uε(x, T ) + 1) + log(vε(x, T ) + 1)]φ2 dx,

where C2 = 2M and C1 = 4M2(1 + ‖ρ0‖∞)/N2. Since uε and vε are bounded the conclusion
follows. �

Note that when k is bounded below away from zero we obtain a local estimate for jε in L2
x,t.

This remark will be important in the next section.

5 Limiting behavior with a regular interaction rate

After these considerations we will solve System (2) uε(x, 0) = u0(x) and vε(x, 0) = v0(x) in the
class of bounded solutions and initial data if the system has a regular interaction rate in the
sense of Definition 2, Section 3. This implies that there are suitable a priori estimates on the
solutions uε, vε (or, equivalently, ρε and jε), needed to perform the passage to the limit ε→ 0.

Let us write K(ρ, x) = k(ρ/2, ρ/2, x). We denote by S = SR,T the bounded strips (−R,R)×
(0, T ) in space time. We will prove the following result.

Theorem 3 Let (uε, vε) a sequence of solutions for the initial value problem of System (2)
with initial values uε(x, 0) = u0ε(x), vε(x, 0) = v0ε(x), u0ε(x), v0ε(x) ∈ L∞(R) such that 0 ≤
u0ε(x), v0ε(x) ≤M and

u0ε ⇀ u0, v0ε ⇀ v0

10



in the sense of weak convergence in L1
loc(R). If k is a regular interaction rate, then there exists

a function
ρ(x, t) ∈ L∞(Q) ∩ C(Q), ρ(x, t) ≥ 0,

such that ρε = uε + vε converges strongly to ρ(x, t) in L2(S), for every bounded strip S, and the
limit density ρ(x, t) is the unique bounded weak solution of the Cauchy problem for the nonlinear
diffusion equation

(16)
∂ρ

∂t
=

∂

∂x

(
D(ρ)

∂ρ

∂x

)
.

with diffusivity D(ρ) = 1/(2K(ρ)), and taking the initial data ρ0(x) = u0(x) + v0(x) in the
sense of traces. Moreover, jε is uniformly bounded in L2(S). It follows that uε(x, t)→ ρ(x, t)/2,
vε(x, t)→ ρ(x, t)/2, and εjε(x, t)→ 0 a.e. and strongly in L2(S) for every S.

A remark about convergence. Since the data are uniformly bounded, weak convergence in
L1
loc(S) is equivalent to weak convergence in Lploc(S) for any p > 1, or to weak-star convergence

in L∞(S). The solutions are also uniformly bounded, so that convergence in L2
loc(Q) implies

immediately convergence of ρε in Lploc(R) for all p < ∞. Moreover, if the initial data are
continuous, the theory of nonlinear diffusion equations says that the data ρ0 are taken in plain
continuous sense.

Proof: Let us collect the information we have on the family of solutions of the present good
problems for different ε > 0.

By the uniform boundedness of the solutions, ρε is bounded in L2(S), and therefore there is
a subsequence that converges weakly to a limit ρ in all strips S.

Under our assumptions we may state the entropy estimate in a local form as follows:

Lemma 5 Let uε and vε be the solutions of System (2), with initial data u0(x), v0(x) ∈
L∞loc(SR,T ). Let k be a regular interaction rate and L be the Lipschitz constant of f(u, v, x)
prescribed by Condition R3 of Definition 2. Then for every R > 0 there exists a constant
c = c(u0, v0, L,N) > 0, independent of ε, such that the solution of System (2) admits the follow-
ing bound:

(17)
∫ T

0

∫ R

−R
jε(x, t)2 dxdt ≤ c.

We deduce that jε converges, at least along subsequences, to some j weakly in L2
x,t(S) for all S.

Moreover, k(uε, vε, x)jε is also locally bounded in L2
x,t and converges weakly locally to some

limit w.

Div-Curl. In order to obtain the precise characterization of this limit we need to use the
following basic tool of compensated compactness theory known as the div-curl lemma [14]:

Lemma 6 Let A be an open set in Rn, and let pε, qε two sequences such that

1. pε ⇀ p in
[
L2(A)

]n;

2. qε ⇀ q in
[
L2(A)

]n;

11



3. div pε is bounded in L2(A);

4. curl qε is bounded in
[
L2(A)

]n.

Then, if we indicate with 〈·, ·〉 the scalar product in Rn, that is 〈p, q〉 =
∑n

i=1 piqi, then

〈pε, qε〉 → 〈p, q〉 in D′.

We can now apply the div-curl lemma: let pε = (ρε, jε) and qε = (−ρε, ε2jε) taking as A any
bounded strip in space time of the form S = (−R,R) × (0, T ). The first equation of the our
hyperbolic system means exactly that div pε = 0, whereas the second one gives that curl qε is
bounded in L2, because of the boundedness of k(ρε)jε. Therefore,

〈pε, qε〉 = −ρ2
ε + ε2j2ε converges to 〈p, q〉 = −ρ2

in D′ as ε → 0+. Since ρ2
ε is bounded in L2 we can then deduce, by the uniqueness of the

distributional limit, that ρ2 belongs to L2
x,t.

We also know that ρε ⇀ ρ in L2
x,t. We then conclude that ρε converges strongly thanks to

the following known result:

Lemma 7 Let Ξ be a set of finite measure and ρε a sequence of functions of class L2(Ξ) such
that ρε ⇀ ρ in L2(Ξ) and ρ2

ε ⇀ ρ2 in L2(Ξ). Then ρε → ρ in L2(Ξ).

From the previous result, we finally deduce the following convergences: ρε → ρ, uε → ρ/2
and vε → ρ/2 in L2

loc(Q) along a suitable subsequence ε→ 0; moreover, k(uε, vε, x)jε → K(ρ, x)j
in L1

loc(Q).
Indeed, the convergence of uε and vε in L2

loc comes from the convergence of ρε and the
fact that εjε → 0 in L2

loc. This implies that for every strip S and along a subsequence uε
and vε converge a.e. to the common limit ρ/2. Using the boundedness we conclude that the
convergence of k(uε, vε, x) towards k(ρ/2, ρ/2, x) takes place a.e and in L2(S) strong. Since jε
converges weakly in L2

loc, the last assertion follows.
Passage to the limit. The convergence of both ρε and jε implies that we may pass to the
limit in the first equation of System (2), which is linear, and

∂ρ

∂t
+
∂j

∂x
= 0

in the sense of distributions. From the second equation of (2) we deduce that

(18)
∂ρ

∂x
= −2K(ρ)j,

at least in distributional sense. Indeed, for any test-function φ ∈ D(R× (0, T )) we have:

ε2
[∫ ∫

jε
∂φ

∂t
dxdt+

∫
jε(x, 0)φ(x, 0) dx

]
+

+
∫ ∫

ρε
∂φ

∂x
dxdt = 2

∫ ∫
k(uε, vε, x)jεφdxdt.

12



Since ε2jε → 0 in L2
loc, as well as ε2

∫
jε(x, 0)φ(x, 0)dx, we obtain in the limit:∫ ∫

∂ρ

∂x
φ dxdt = −2

∫ ∫
K(ρ)jφ dxdt,

which is the weak formulation of (18) in D′. This also means that ∂ρ/∂x is an L2
loc function.

Now, since k is bounded above and below away from zero, we deduce from (18) that

(19) j = − 1
2K(ρ)

∂ρ

∂x

in L2
loc(Q). By inserting equation (19) in the continuity equation, we can finally conclude that

ρ satisfies the nonlinear diffusion equation (16) with diffusivity D(ρ) = 1/2K(ρ).

Weak equation with initial data. Let ρ0ε(x) = u0ε(x) + v0ε(x). By the first equation of
the system we have ∫ T

0

∫
R

(ρεηt + jεηx) dxdt+
∫

R
ρ0ε(x)η(x, 0) dx = 0

for all test functions η(x, t) ∈ C∞x,t(Q) such that η ≥ 0 and η vanishes for all |x| ≥ R and t ≥ T .
Using the convergences of ρε and jε as ε→ 0 and the expression for j we get the complete form
of the weak formulation

(20)
∫ T

0

∫
R

(
ρηt −

1
K(ρ)

ρxηx

)
dxdt+

∫
R
ρ0(x)η(x, 0) dx = 0

for the same class of functions η. This is a standard way of incorporating the initial data into
the weak formulation in weak theories of parabolic equations.

Identifying the limit. Equation (16), with initial conditions of the type described by (20), is
uniformly parabolic, and therefore admits one and only one global solution which is a continuous
function for t > 0. See [10] for the classical quasilinear theory and [15] for uniqueness for
nonlinear diffusion equations. This uniqueness result guarantees the existence of a unique limit
point for the whole family {ρε}. The regularity theory for quasilinear parabolic equations implies
that ρ is Hölder continuous for t > 0. It is also continuous down to t = 0 if the initial data
ρ ∈ C(R).

Initial trace. Next, we prove that the limit equation takes on the initial condition when
t→ 0 in the weak sense (trace sense). By the first equation of the system for every ϕ ∈ C1

0 (R)
and for every τ > 0 we have ∫ τ

0

∫
R

(
∂ρε
∂t

+
∂jε
∂x

)
ϕ(x) dxdt = 0.

Hence, putting ρ0ε(x) = u0ε(x) + v0ε(x) we have

(21)
∫

R
(ρε(x, τ)− ρ0ε(x))ϕ(x) dx =

∫ τ

0

∫
R
jε
∂ϕ

∂x
dxdt.

Let us show that the right-hand side vanishes as (ε, τ)→ (0+, 0+). Indeed,∫ τ

0

∫
R
jε
∂ϕ

∂x
dxdt ≤

(∫ τ

0

∫
R
j2ε (x, t) dxdt

)1/2
(∫ τ

0

∫
R

∣∣∣∣∂ϕ∂x
∣∣∣∣2 dxdt

)1/2

13



≤ Cτ1/2

(∫ τ

0

∫
R
j2ε (x, t) dxdt

)1/2

≤ C∗ τ1/2.

Therefore, we can pass to the limit ε→ 0+ in (21) and get for almost all t > 0∫
R

(ρ(x, t)− ρ0(x))ϕ(x) dx ≤ C∗ t1/2.

This holds for all t by continuity of ρ. Letting t→ 0 we obtain

(22) lim
t→0+

∫
R

(ρ(x, t)− ρ0(x))ϕ(x) dx = 0,

for all ϕ ∈ C1
0 (R). Since the functions ρ(x, t), ρ0(x) are uniformly bounded, we can extend this

limit property to test functions ϕ(x) ∈ L1(R) by approximation. In other words, the initial data
are recovered in the sense of weak L1

loc(R) convergence. �

Better convergence can be obtained if the rate or the data have additional properties. We
will examine both issues in the sequel. To begin with, we may get better convergence by a
control of the tails of the solutions |x| → ∞.

Lemma 8 Let u0, v0 ∈ L1
+(R)∩L∞(R), such that the moments of order 2β exist and are finite:

(23)
∫

R
(u0(x) + v0(x))(1 + |x|2)β dx < C0

for some 0 < β < 1/4. Then for every 0 < t < T we have that the pair (uε, vε), solution of (2),
satisfies the estimate

(24)
∫

R
(uε(x, t) + vε(x, t))(1 + |x|2)β dx < CT .

Proof: We calculate

d

dt

∫
R
ρε(x, t)(1 + |x|2)β dx = 2β

∫
R
jε x(1 + |x|2)β−1 dx.

Since the data are in L1 we know that jε ∈ L2(QT ). On the other hand, x(1+ |x|2)β−1 ∈ L2(QT )
if β < 1/4. �

Generally speaking, the result cannot be applied to the system with rate kα = (u+ v)α with
α 6= 0. However, if we know that the data and the solutions are also bounded away from zero,
then such rate kα fulfills all needed conditions on the range of applied values for every α ∈ R
and we have:

Corollary 4 Theorem 3 applies to the systems with rate kα for all α under the additional
assumption: uε, vε ≥ δ > 0 for every ε.

Having a finite moment implies integrability, and moreover, uniform integrability at infinity.
We notice that under the joint conditions of Theorem 3 and Lemma 8 the constant CT is
uniform in ε, hence the sequence ρε has a uniformly small integral in exterior sets of the form
{|x| ≥ R} × (0, T ) for R large enough. This allows to improve the results of Theorem 3.

14



Corollary 5 Under the conditions of Theorem 3, if the initial data are integrable and the mo-
ments of order 2β given by (23) with 0 < β < 1/4 are uniformly bounded, then ρε → ρ, uε → u
and vε → v strongly in L1(QT ).

We will discuss merely integrable data after we introduce the question of dissipativity in the
next section. More results on tail control will be needed in Section 8 and are given in Appendix
2. Finally, in the next section we will need an improvement of Theorem 3:

Corollary 6 The result of Theorem 3 still holds if we allow to replace the rate k in the system
satisfied by uε, vε by a uniformly bounded regular family kε such that kε → k a.e..

By a uniformly bounded family we mean that the constants in the definition of regular rate
are the same for all ε.

6 Hydrodynamical limit for rates kα, α > 0. General results

Let us examine next the hydrodynamical limit for nonregular rates. We take as study case the
rates kα with α > 0 that are degenerate at the level u = 0 so that we cannot use the method of
the previous section for small data, like u0, v0 ∈ X = L1

+(R) ∩ L∞(R).
As we had proposed, we lift the initial data by an amount δ > 0, solve the approximate

problems to get solutions ρε,δ(x, t), jε,δ(x, t), corresponding to shifted data (u0ε(x)+δ, v0ε(x)+δ).
The next step is to pass to the limit ε → 0+ and δ → 0+ to recover the hydrodynamical limit
for

ρε(x, t) = lim
δ→0+

ρε,δ(x, t).

This is a delicate case of double limit, and we will not be able to solve it in its full generality
unless α ≤ 1, thanks to the properties of ordered dissipativity.

In any case, one of the iterated limits is easy to study. Theorem 3 solves the diffusive limit of
the lifted problems. As ε→ 0+, ρε,δ → ρδ for fixed δ > 0, where ρδ solves the diffusion equation
with data ρ0δ(x) = ρ0(x) + δ.

The next step is to pass to the limit as δ → 0+. This needs to know the properties of
diffusion equations that we recall next. Indeed, weak solutions can be constructed for the
diffusion equation with quite general data, say, L∞loc data. The Maximum Principle applies to
the diffusion equation, so that the family ρδ is monotone, and there exists the limit

ρ(x, t) = lim
δ→0

ρδ(x, t) ≥ 0.

The value of ρ(x, t) has been carefully studied in the fast diffusion literature and the situation
is as follows:

(a) Standard diffusive case: When either the exponent α < 2 or the data ρ0 are not integrable
(both as x→∞ and as x→ −∞). In that case it is known that the limit ρ(x, t) is the solution
of the diffusion equation with initial data ρ0(x). For data in the class X the limit takes place
in Lploc(R) for every p ∈ [1,∞), uniformly in time. Note that standard norm used in nonlinear
diffusion theory is the L1-norm, but our solutions are uniformly bounded, hence, all Lp norms
apply as well.

(b) Ultra-diffusive case: it happens when α ≥ 2 and the data are integrable at one of the
two ends of the real line. Then the limit ρ(x, t) = 0 for every x ∈ R and t > 0, in other words,
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it is the trivial solution. In physical terms, this interesting limit means that the mass moves
out to infinity at increasing speeds as δ → 0, so that the “limit process is empty because all the
mass went to infinity” at t = 0+. The discontinuity in the initial data is called an initial layer.
Convergence is locally uniform in R× [τ,∞) for τ > 0.

Proposition 7 Given α > 0 and u0, v0 ∈ L∞(R), the iterated limit

(25) ρ(x, t) = lim
δ→0

lim
ε→0

ρε,δ(x, t)

of the lifted approximations to the hyperbolic system (2) is the solution of the diffusion equation
in case (a), identically zero in case (b). The convergence takes place in L2

loc(R × [τ,∞)) with
τ = 0 in case (a), τ > 0 in case (b).

Better convergence can be obtained by looking more closely to the data but this is not our
main concern here. It is rather to improve the result if possible to a complete double limit
(ε, δ)→ (0, 0), or at least to a wider classes of sequences. The whole limit will only be achieved
when |α| ≤ 1. But the existence of special sequences along which both ε and δ go to zero can
be done in the present general context.

Proposition 8 There exists a monotone continuous function ω : R+ → R+ with lims→0 ω(s) =
0 such that the limit of Theorem 7 holds along all sequences (ε, δ) → (0, 0) with ε, δ > 0, with
the restriction that ε ≤ ω(δ).

Proof: Let us fix a set S = (−r, r)× [τ, T ] with r, τ, T > 0, and τ = 0 in case (a), 0 < τ < T in
case (b). Given any n ≥ 1 and we first find a δn > 0 such that∫ r

−r
|ρδn(x, t)− ρ(x, t)| dx ≤ 1/n,

for all τ < t ≤ T. We can choose the δn as a decreasing sequence. We define the intervals
Jn = [δn+1, δn].

As a second step, let us consider the functions ρ̄ε,δ(x, t) = ρε,δ − 2δ with δ ∈ Jn, n fixed.
Every ρ̄ε,δ solves system (2) with k = (uε + vε + 2δ)α, which is regular. Moreover, the constants
that are used in the proof of Theorem 3 are uniform for δ ∈ Jn, hence the convergence result
of this theorem can be extended to cover also the case where k varies in the present way, see
Corollary 6. This is a simple but important verification that we leave to the reader, which will
also observe that εn depends on n, r, Jn, and the maximum M of ρ but not on the particular
data.

The consequence of the previous step is that there exists εn such that

‖ρεn,δ − ρδ‖2 ≤
1
n

in the L2 norm in space-time on S. Without loss of generality we may choose εn as a decreasing
sequence as n→∞.

We now define ω(δ) in any continuous way so that ω(δ) ≤ εn whenever δ ∈ Jn. �

Remark There is a weak point in this result: namely, we have only a positive result along
special sequences, and the condition 0 < ε ≤ ω(δ) defining them is not explicit.
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7 Dissipative rate functions. L1 estimates, mild solutions and
Maximum Principle

In the next sections we examine the improvements that may be obtained by assuming that the
rate is dissipative, see Definition 3. The main fact is that we can obtain dependence results
expressed in terms of L1 norms instead of L∞ norms. Our first result is a version of Lemma 3.

Lemma 9 Let k be admissible and ω-dissipative and let (ui(x, t), vi(x, t)) be two weak solutions
of (2) with initial data (u0,i(x), v0,i(x)), i = 1, 2. Then, for every a, b ∈ R, a < b, we have

(26)

∫ b

a
(|u1(x, t)− u2(x, t)|+ |v1(x, t)− v2(x, t)|) dx ≤

eωt/ε
2

∫ b+t/ε

a−t/ε
(|u0,1(x)− u0,2(x)|+ |v0,1(x)− v0,2(x)|) dx.

Proof: The outline is the same of Lemma 3. At the end of the proof the contribution of the right-
hand terms involving k disappears precisely because of dissipativity. If k is only ω-dissipative
the end of proof is very similar and we have to use Gronwall’s Lemma with constant ω/ε2. �

When the data are integrable we can let a, b→∞. We have

Corollary 9 If k is dissipative and the data are integrable then for every t > 0 and any two
weak solutions of (2) we have

(27) ‖u1(t)− u2(t)‖1 + ‖v1(t)− v2(t)|1 ≤ eωt/ε
2
(‖u0,1 − u0,2‖1 + ‖v0,1 − v0,2‖1),

where ‖ · ‖1 denotes the norm in L1(R).

When ω = 0 real contraction (better said, non-expansion) happens in L1(R) norm. This
holds in our problem when k(u, v, x) = (u+ v)α with |α| ≤ 1.

Mild solutions with integrable data

Using the latter result, we may go back to the hyperbolic system and extend Theorem 1 to cover
all initial data in the class L1

+(R) without the restriction of local boundedness. But for that we
also have to extend the class of solutions.

Definition 6 A mild solution of System (2) is a pair of functions (u, v) ∈ C([0, T ] : L1(R)),
that can be obtained as limit in C([0, T ] : L1(R)) of a sequence (un, vn) of weak solutions of the
system with data (u0n, v0n) ∈ L1

+(R) ∩ L∞(R).

Here, T is a finite number or +∞ depending on the problems statement. The distinction is
important for problems which may have blow-up in finite time, which is not the case in our
study. As a consequence of the previous results, if k is ω-dissipative such a limit exists for every
convergent sequence of data and is uniquely determined by the limit of the initial data. We have
(cf. e.g. [4] or [8] for the theory of dissipative operators)

Theorem 10 Let 0 ≤ u0(x), v0(x) ∈ L1(R) and k be ω-dissipative. Then the initial value
problem for System (2) admits a unique mild solution uε(x, t), vε(x, t) ∈ C

(
[0,∞);L1(R)

)
for

all T > 0. Estimate (27) holds for any two mild solutions.
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T -dissipativity and comparison

The rate functions k(u, v, x) = (u+v)α with |α| ≤ 1 enjoy a stronger version dissipativity, called
T -dissipativity.

Definition 7 We say that an admissible rate k is T -dissipative (resp. T -ω-dissipative) if for
every a1, a2, b2, b2 ∈ R and a.e. x ∈ R we have

(k(a1, b1, x)(b1 − a1)− k(a2, b2, x)(b2 − a2))( sign +[a1 − a2]− sign +[b1 − b2]) ≤ 0,

resp.

(k(a1, b1, x)(b1 − a1)− k(a2, b2, x)(b2 − a2))( sign +[a1 − a2]− sign +[b1 − b2]) ≤

ω(|a1 − a2|+ + |b1 − b2|+).

We can prove a variant of Lemma 9 adapted to this concept.

Lemma 10 Let k be admissible and T -ω-dissipative and let (ui(x, t), vi(x, t)) be two weak so-
lutions of (2) with initial data (u0,i(x), v0,i(x)), i = 1, 2. Then, for every a, b ∈ R, a < b, we
have

(28)

∫ b

a

(
|u1(x, t)− u2(x, t)|+ + |v1(x, t)− v2(x, t)|+

)
dx ≤

eωt/ε
2

∫ b+t/ε

a−t/ε

(
|u0,1(x)− u0,2(x)|+ + |v0,1(x)− v0,2(x)|+

)
dx.

Proof: We argue as in Lemma 9, by using sign +[u1(x, t) − u2(x, t)] instead of sign [u1(x, t) −
u2(x, t)] and sign +[v1(x, t) − v2(x, t)] instead of sign [v1(x, t) − v2(x, t)] at every occurrence of
sign function in the proof. �

The importance of this result lies, in particular, in the following immediate consequence.

Corollary 11 Under the previous assumptions, if the data are ordered: u1,0(x) ≤ u2,0(x) and
v1,0(x) ≤ v2,0(x) almost everywhere, then the solutions of (2) are also ordered:

(29) u1(x, t) ≤ u2(x, t), v1(x, t) ≤ v2(x, t)

almost everywhere in x, for all t ∈ R+.

This is the Comparison Theorem, a powerful tool in Differential Equations usually referred
to as the Maximum Principle. We recall that k(u, v, x) = (u + v)α is T -dissipative for |α| ≤ 1,
see Appendix I.
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8 Initial data in the class L1
+ for kα, |α| ≤ 1

Next, we want to consider the case where the rate is T -dissipative, and its δ-lifting regular, for
instance kα with |α| ≤ 1. In order to avoid technicalities we consider only the case kα. We can
treat general nonnegative and integrable data. We are now able to complete the proof of the
double limit addressed in Section 6. We can even eliminate other requirements, like boundedness
of the solutions.

We start our study with the L1 theory. This is our main result.

Theorem 12 Let k = kα with |α| ≤ 1, and let (uε, vε) a sequence of mild solutions for the initial
value problem of System (2), with nonnegative initial values u0ε(x, 0) ∈ L1(R), v0ε(x, 0) ∈ L1(R)
converging to some u0, v0 ∈ L1(R) as ε→ 0. The following holds:
(a) There exists a positive and smooth function ρ such that ρε(x, t) converges to ρ(x, t) in
C([0, T ];L1(R)), T ≥ 0.
(b) When −1 ≤ α < 1, the limit density ρ(x, t) is the unique weak solution of the Cauchy problem
for the nonlinear heat equation (5) with initial data ρ0(x) = u0(x) + v0(x) ∈ L1(R). If α = 1,
we obtain the unique maximal solution of (5), characterized by the property of conservation of
mass.
(c)We also have uε, vε → ρ/2 in Lp(S) on compact subsets S of Q = R× (0,∞), p <∞.

Proof: I. Case of special data. We make the additional assumptions that u0, v0 ∈ L1
+(R) ∩

L∞(R), and that there is sufficient decay as |x| → ∞, for instance:

(30)
∫

R
(1 + x2)p(u2

0ε(x) + v2
0ε(x)) dx < +∞

for some p > 1/2, uniformly in ε > 0. We proceed in three steps:
(i) As in Section 6, we approximate solutions by lifting the data of the problem by an amount
δ > 0, getting solutions ρε,δ(x, t) ≥ 2δ, bounded above by ‖ρ‖∞ + 2δ. By the law of mass
conservation (10) we have ∫

R
(ρε,δ(x, t)− 2δ) dx =

∫
R
ρ0ε(x)dx.

In order to see the limit of the original problem we review the double limit with respect to ε
and δ, beginning with the iterated limit already discussed.

First, we let ε → 0+ with δ > 0 fixed, obtaining ρδ in the process. We then have to let
δ → 0+. This involves only the target equation (5). Completing what was said in Section 6,
there is uniqueness and comparison for uniformly positive solutions (as the ρδ are). Since the
data ρ0δ(x) are ordered, so is the sequence of solutions ρδ(x, t),

ρδ(x, t) ≤ ρδ′(x, t) if 0 < δ < δ′.

By letting δ → 0 we conclude that there exists a unique limit ρ∗, solution of the target equation
with initial data ρ0(x) = u0(x)+v0(x) ∈ L1

+(R), such that the mass is conserved (i.e., maximal):∫
R
ρ∗(x, t)dx =

∫
R
ρ0(x)dx,
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for all t ∈ R+. See Theorem 1 of [6]. It is also proved that function ρ∗(x, t) is positive and
C∞-smooth in Q, and it is bounded for t ≥ τ > 0.

In a second step of this case, we consider the limit δ → 0+ with ε fixed, and then the limit
ε → 0+. As long as ε is fixed, we have a local theory with local L1-dependence (Section 4).
Therefore, for all ε > 0 the sequence ρε,δ admits almost everywhere a limit, ρε, which is the
weak solution of System (2) with data ρ0. By the estimates of Lemma 1,∫

R
ρε(x, t) dx =

∫
R
ρ0ε(x) dx

for all ε > 0. We know that ρε is bounded in L1 ∩L∞(QT ), therefore there exists a subsequence
that converges weakly to some ρ∗ in L2(QT ), ρ∗ ≥ 0.

(ii) To continue the proof in the case of special data, we still have to compare ρ∗ with ρ∗ and
show that they coincide a.e. This happens in three steps:

By the Maximum Principle (see Corollary 11 and Appendix I), we know that the sequence
ρε,δ is monotone, ρε,δ1 ≤ ρε,δ2 for almost all (x, t) ∈ R× R+ when δ1 ≤ δ2. Hence, ρε,δ ≥ ρε a.e.
for all ε. In the limit ε→ 0+ we have ρδ ≥ ρ∗ almost everywhere. Taking now limits as δ → 0+,
we get ρ∗ ≥ ρ∗ almost everywhere.

Proving equality of those functions needs now a delicate analysis of the L1 norm of the
solutions. Since we know that they are ordered, they if we prove for every t the mass is the
same, ∫

R
ρ∗(x, t) dx =

∫
R
ρ∗(x, t) dx,

then they must be be a.e. identical. We will estimate separately the mass of ρ∗ and that of ρ∗.
One part is easy: following the proof of convergence of ρε,δ first to ρδ and then to ρ∗, we can

conclude that
∫

R ρδ(x, t) dx =
∫

R ρ0(x) dx, since the limit ε→ 0 is taken under regular conditions
so that Corollary 5 applies. On the other hand, the second limit (as δ → 0 is monotone); it
follows that ∫

R
ρ∗(x, t) dx =

∫
R
ρ0(x) dx.

The estimate for ρ∗ is based on a technical estimate using the decay assumption (30). In
order not to disturb more the presentation at this point, we give the details in Appendix II, see
Lemma 13, and continue. The gist of the result is that when we apply it to the functions ρε, we
are able to conclude that for some β > 0 the moments∫

R
(1 + x2)q(ρε,δ − 2δ)(x, t) dx ≤ C

with q = p− (1/2) > 0 and a bound that is independent of ε, δ and t ∈ (0, T ). This means that
for every η > 0 there is an R such that∫

|x|>R
ρε(x, t) dx ≤ η.

uniformly in ε, and t ∈ (0, T ). This uniform estimate means that no mass of ρε is lost at infinity
when we perform the second limit, ε → 0 so that ρε ⇀ ρ∗. We conclude that mass is also
conserved in the limit ∫

R
ρ∗(x, t) dx =

∫
R
ρ0(x, t) dx
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Since ρ∗(x, t) ≥ ρ∗(x, t) ≥ 0 a. e., this means ρ∗(x, t) = ρ∗(x, t) almost everywhere, for all t > 0.
By putting ρ∗(x, t) = ρ∗(x, t) = ρ(x, t), we have proved so far, in the case |α| ≤ 1, that if

(ρε, jε) is a sequence of solutions for the initial value problem of System (4), under the special
assumptions on the initial values, then ρε(x, t) = uε(x, t) + vε(x, t) converges to ρ(x, t), solution
of the target equation with initial conditions ρ(x, 0) = u0(x) + v0(x).
(iii) Let us now improve the mode of convergence and show that ρε → ρ in C([0, T );L1(R)).
Firstly, the tail estimates apply to the family ρ̄ε,δ = ρe,δ − 2δ ≥ 0 uniformly in ε and δ and
0 < t < T . Since ρ̄ε,δ → ρε as δ → 0, we are thus reduced to prove the convergence in
C([0, T ) : L1(I)), with I = (−R,R) for all R > 0.

Secondly, we estimate the difference ρε,δ−ρε by taking into account the conservation of mass∫
R
ρ̄ε,δ(x, t) dx =

∫
R
ρε(x, t) dx

(recall that ρ̄ = ρ− 2δ is a solution with regular rate), the ordering, ρε,δ(x, t) ≤ ρε(x, t) and the
decay at infinity. After an easy calculation we conclude that for every η > 0 there exist R large
enough and δ small enough so that∫ R

−R
|ρε,δ(x, t)− ρε(x, t)| dx ≤ η,

for all 0 < t < T and all ε > 0. Hence, we only need to prove the result for ρε,δ for fixed δ > 0.
In the latter case we prove that the family ρ̄ε = ρε,δ − 2δ is uniformly continuous as a

function C([0, T ];L1(R)). Actually, the family {ρ̄ε(t)} is relatively compact in L1(R), uniformly
in ε and t, since we have x-regularity coming from the dissipativity of the problem for |α| ≤ 1
(see Appendix I), which implies that, for all 0 < t,

‖ρ̄ε(x+ h, t)− ρ̄ε(x, t)‖1 ≤ ‖ρ0(x+ h)− ρ0(x)‖1,

which tends to zero as h → 0. Uniform estimates in time are given by using the first equation
of the system, ρ̄t + j′x = 0, plus the L2 bound for j′, which is uniform in ε. Here j′ is the flux
corresponding to ρ̄.

Putting all these estimates together we conclude that ρ̄ε is uniformly continuous as a function
C([0, T ];L1(R)). The same applies to ρε. We conclude that ρε → ρ in C([0, T ];L1(R)).

By the uniqueness of the limit the whole sequence converges and the convergence takes place
also in the a.e. sense.

We recall that the case of α = 1 is slightly different, since the Cauchy problem does not
possess uniqueness of finite mass solutions. But the property of conservation of mass, inherited
by the limit, permits us to identify such a limit with the unique maximal solution of (5), char-
acterized by the conservation of mass in the paper [6], to which we refer for more details on the
characterization of the maximal solution.

II. General data of class L1
+. We want to remove the special assumptions, namely boundedness

for the initial data and the decay at infinity. We proceed as follows. Given a pair of initial
functions (u0, v0) ∈ L1

+(R), for every integer n > 1 we construct an approximate initial condition

u0,n(x) = min{u0(x), n}χn, v0,n(x)) = min{v0(x), n}χn

where χn is the characteristic function of the interval [−n, n]. We denote by ρε,n(x, t) the first
component of the solution for the macroscopic equations corresponding to such initial conditions.
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The initial data u0,n(x) and v0,n(x) obviously satisfy the conditions of part (i), hence we deduce
that ρε,n → ρn with convergence in C([0, T ];L1(R)).

Let now ρε be the first component of the mild solution for the macroscopic equations corre-
sponding to the initial conditions u0(x) and v0(x). Because of the dissipativity of the problem,
we have for all t > 0

‖ρε,n(t)− ρε(t)‖1 ≤
∫
|x|>n

(u0(x) + v0(x)) dx+
∫

(|u0(x)− n|+ + |v0(x)− n|+) dx,

and this bound tends to zero as n→∞ because the initial data are of class L1. Therefore, for
every k there exists n(k) such that for n ≥ n(k) we have

‖ρε,n(t)− ρε(t)‖1 ≤
1
k

The same contraction estimate applies to the target equation with same initial data, according
to the results of [6], hence the same inequality holds with ρε,n(t), ρε(t) replaced by ρn(t), ρ(t),
where ρ is the solution of the target equation corresponding to data u0 + v0 ∈ L1

+(R). Since we
have proved in the previous step that ρε,n converges to ρn in the sense of C([0, T ];L1(R)), by
the triangle inequality the same happens for ρε that tends to ρ in C([0, T ];L1(R)) as ε→ 0.

III. Convergence of u and v. The proof is performed first under the conditions of I above,
passing then to the limit in the general case by approximation and dissipativity with implies
continuous dependence for u and v with respect to the initial data uniformly in ε. In case (i)
we have the convergence of uε,δ → 1

2ρδ, together with the comparison uε,δ ≥ uε, which gives as
δ → 0 an inequality

lim sup
ε→0

uε ≤
1
2
ρ,

on compact subsets of Q = R × (0,∞). The same holds for vε. Since ρε = uε + vε the lim sup
is indeed a limit and we have equality and strong convergence. �

Corollary 13 The hydrodynamical limit of the previous theorem can be obtained as a double
limit of the functions ρε,δ as (ε, δ)→ (0+, 0+) with no restriction on the sequences (ε, δ).

The proof relies on the observation that all sequences in the double limit lead to sequences
of solutions sandwiched between the two iterated limits.

8.1 Extension. Initial data in the class L1 + L∞

We can establish the hydrodynamical limit for the hyperbolic System 2 with rate k = kα with
|α| ≤ 1 when the initial conditions and solutions belong to larger functional classes. The
idea is to use the solutions of already established cases as barriers for the new problems and
apply the maximum principle. We consider the space X = (L1(R) + L∞(R))+ consisting of
all measurable real functions f ≥ 0, such that we can find a decomposition f = f1 + f2, with
f1 ∈ L1(R), f2 ∈ L∞(R). It is equivalent to say that f ≥ 0 is measurable and there exists an
M > 0 such that (f −M)+ ∈ L1(R).

The following theorem is an easy extension of Theorem 12:
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Theorem 14 Let k = kα with |α| ≤ 1, and let (uε, vε) a sequence of mild solutions for the initial
value problem of System (2), with nonnegative initial values u0ε(x, 0), v0ε(x, 0) ∈ X, converging
to some u0, v0 ∈ X as ε→ 0.

Then there exists a positive and smooth function ρ such that ρε(x, t) converges to ρ(x, t) in
L1
loc(Q). When −1 ≤ α < 1, the limit density ρ(x, t) is the unique weak solution of the Cauchy

problem for the nonlinear heat equation (5) with initial data ρ0(x) = u0(x) + v0(x). If α = 1,
we obtain the unique unique maximal solution of (5).

Proof: (a) The case of data and solutions in L∞+ (R) offers no difficulties, being sandwiched
between the already solves cases u0, v0 ∈ L1(R) on the one hand and u0, v0 ∈ L∞(R), u0, v0 ≥
δ > 0 on the other. We get convergence to the diffusive limit with a rather weak condition: since
we know that the family ρε is bounded, we conclude that ρε → ρ in the weak∗ sense of L∞.

(b) For the case u0, v0 ∈ L1(R) + L∞(R) we cut the functions at height n (much as we did
in part (ii) of Theorem 12, and use part (a) to produce approximations from below. We then
use the L1-contractivity to pass to the limit as n→∞. It is a bit more of work, since we have
to compare solutions. Convergence takes now place in L1

loc weak. �

This result covers in particular data in the spaces Lp(R) for all 1 ≤ p ≤ ∞. According to
the estimate of Lemma 1 the solutions would in that case be bounded in L∞((0, T );Lp(R)).

9 Other Extensions. Bounded domain with Neumann data

Let us now consider System (2) posed in bounded space interval, say I = (−R,R). Let us add
initial conditions as before, with

u0ε ∈ L1
+(I), v0ε ∈ L1

+(I),

and Neumann conditions
ux + vx = 0 for x = ±R, t > 0.

This conditions are meant to preserve in time the total mass∫
I
(uε(x, t) + vε(x, t)) dx =

∫
I
(u0ε(x) + v0ε(x)) dx.

We can then re-do the L∞ theory for regular k’s and the L1 theory for kα with no major
changes, thus establishing the diffusive limit of the hyperbolic system. Note that in this case
L∞(I) ⊂ L1(I).

One immediate application is the diffusive limit in R with L1-periodic initial data, i.e. data
that are L1(I) for some interval I as above and repeat periodically outside of I with period 2R.
The problem is equivalent to the previous problem in I with Neumann data.

We leave the easy details to the interested reader.

Appendix I

In this section we study the properties of dissipativity, ω-dissipativity and T -dissipativity
for System (2), started in Section 7. Let us start by proving the assertion about the rates
kα(u, v, x) = (u+ v)α.
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Proposition 15 The rate kα is T -dissipative for |α| ≤ 1. For α ≥ 1 it is ω-dissipative on
bounded solutions 0 ≤ u, v ≤M with

ω = (α− 1) (2M)α.

In case α < −1 k is ω-dissipative on solutions u, v ≥ N > 0 if ω ≥ |1 + α|(2N)α.

Proof: Consider the expression to be checked for ω-dissipativity:

(31)
[(u1 + v1)α (v1 − u1)− (u2 + v2)α (v2 − u2)− ω(u1 − u2)] sign (u1 − u2) +

[(u1 + v1)α (u1 − v1)− (u2 + v2)α (u2 − v2)− ω(v1 − v2)] sign (v1 − v2) .

We want to prove that it is nonpositive for suitably chosen ω, depending possibly on α. If
u1 > u2 ≥ 0, v1 > v2 ≥ 0, we have that sign (u1 − u2) = sign (v1 − v2) = +1 and therefore the
sum in the previous equation is equal or less than −ω(|u1 − u2|+ |v1 − v2|) so we may take any
ω ≥ 0. The same result occurs when 0 ≤ u1 < u2, 0 ≤ v1 < v2.

We are left with only two cases to study: one is when u1 > u2 ≥ 0 and, at the same time,
0 ≤ v1 < v2; the second one when 0 ≤ u1 < u2 and, at the same time, v1 > v2 ≥ 0. Since they
are similar, we perform the calculations only in the first case. Then equation (31) reduces to

(32) [2(u1 + v1)α + ω] (v1 − u1)− [2(u2 + v2)α + ω] (v2 − u2) .

We consider now for x, y ≥ 0, the function

f = {2(x+ y)α + ω}(y − x).

In view of the relative values of ui and vi we want f to increase with y and decrease with x.
Since for x, y > 0

∂f

∂x
= 2(x+ y)α−1{(α− 1)y − (α+ 1)x} − ω, ∂f

∂y
= 2(x+ y)α−1{(α+ 1)y + (1− α)x}+ ω,

when α ∈ [−1, 1] it is immediate that ω = 0 implies fx ≤ 0 and fy ≥ 0 as desired.
In case α > 1 the function is monotone non-increasing with respect to the variable x and

monotone non-decreasing with respect to y for all 0 ≤ x, y ≤M if ω ≥ (α− 1)(2M)α. The case
α < −1 is perfectly similar and the condition is satisfied for ω ≥ |1 + α|(2N)α if u, v ≥ N .

In order to prove T -dissipativity we replace the sign function by sign + in formula (31).
There is a difference in the case we have examined, u1 > u2 and v1 < v2. Now the inequality to
be checked is

(33) (u1 + v1)α (v1 − u1) ≤ (u2 + v2)α (v2 − u2) ≤ 0.

Using the same notation as before and the monotonicity of f for |α| ≤ 1 we have f(u1, v1) ≤
f(u2, v1) ≤ f(u2, v2), which gives the result. �
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Functional setting

Let us proceed to review the functional setting for the consideration of semigroups generated by
dissipative operators. We will proceed in a rather sketchy way since our main goal is to motivate
the definition of dissipative interaction rate. For the reader’s convenience we start by recalling
some definitions. An operator

A : D(A) ⊂ L1(X)→ L1(X)

is called dissipative if it is closed and if it is such that, for all f1, f2 ∈ D(A):∫
X

(Af1 −Af2) sign (f1 − f2) dx ≤ 0.

Moreover, an operator
A : D(A) ⊂ L1(X)→ L1(X)

is called ω-dissipative if it is closed and there exists ω ∈ R+ such that, for all f1, f2 ∈ D(A):∫
X

[(A− ωI)f1 − (A− ωI)f2] sign (f1 − f2) dx ≤ 0.

Finally, an operator
A : D(A) ⊂ L1(X)→ L1(X)

is called T -dissipative (in the sense of Bénilan) if it is closed and if it is such that, for all f1,
f2 ∈ D(A): ∫

X
(Af1 −Af2) sign +(f1 − f2) dx ≤ 0,

where

sign +(r)
{

1 x ≥ 0
0 x < 0.

If A is dissipative (resp. ω-dissipative, T -dissipative) we say that −A is accretive (resp. ω-
accretive, T -accretive). Dissipative operators generate semigroups of contractions in L1(R) by
solving the abstract equation ft = Af , f(0) = f0. The range of data that may serve as initial
data is characterized in terms of a range condition for the operator. The solutions are called mild
solutions. This is well-known theory as developed by Bénilan, Crandall and other researchers,
cf. [2].

Let us apply these concepts to our problem. We have to investigate the behavior of the
operator

Bkf =
(
−∂u
∂x

+ k(u, v, x)(v − u),
∂v

∂x
+ k(u, v, x)(u− v)

)
=

where f = (u, v). We split the operator in two parts

∂

∂x
(−u, v) +Akf.

We write Bα, Aα instead of Bk, Ak when k is replaced by kα. Aα is the operator defined by

Aαf = (ρα(v − u), ρα(u− v)) ,
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with ρ = u+ v. It is well-known that the linear operator

Cα =
∂

∂x
(−u, v)

is T -dissipative in L1(R) with domain W 1,1(Ω)×W 1,1(Ω). The main point of the introduction
of the definitions of dissipativity for interaction rates is the following result.

Lemma 11 Ak is a dissipative operator in L1(R) (resp. T -dissipative, ω/ε2 dissipative) if it is
closed and k is a dissipative rate (resp. T -dissipative, ω dissipative).

As is the rule with unbounded operators, the domains have to be carefully defined. For
k = kα the domain of Aα is taken as D+ (Aα), i.e. the subset of (u, v) ∈ L1

+(R) × L1
+(R) such

that kα(u, v)(v − u) ∈ L1(R). For α > 1 we take

D∗ (Aα) = {(u, v) ∈ D+(Aα) : ‖u‖∞, ‖v‖∞ <∞},

and for α < −1 we take the domain D+
δ (Aα) ⊂ D+ (Aα) where u, v ≥ δ > 0.

After some calculations we can get

Lemma 12 Let −1 ≤ α ≤ 1. Then the operator Bα is T -dissipative from the domain D+ (Bα) =
D+(Aα) ∩ (W 1,1(Ω)×W 1,1(Ω)) into L1

+(Ω)× L1
+(Ω).

Standard theory, cf. [1], allows now to prove the contraction theorem.

Corollary 16 Let f1 = (u1(x, t), v1(x, t)) and f2 = (u2(x, t), v2(x, t)) two solution of System (2)
when |α| ≤ 1, with initial data of class L1 f0,1 = (u1,0(x), v1,0(x)) and f0,2 = (u2,0(x), v2,0(x))
respectively. Then

‖f1 − f2‖1 ≤ ‖f0,1 − f0,2‖1.

Moreover, if
u1,0(x) ≤ u2,0(x) and v1,0(x) ≤ v2,0(x)

almost everywhere, then the solutions are such that u1(x, t) ≤ u2(x, t) and v1(x, t) ≤ v2(x, t)
almost everywhere, for all t ∈ R+.

Appendix II. Tail control

We will obtain decay estimates for solutions of the hyperbolic system with a rate k such that
for some c > 0 and α ≥ 0

(34) k(u, v, x) ≥ c(u+ v)α.

holds for all u, v ≥ 0. The estimates are useful in controlling the tails of the solutions (i.e., the
small mass as |x| → ∞) when α < 2.

Lemma 13 Let uε and vε be the solutions of System (2), with initial data u0(x), v0(x) ∈ L∞loc(R),
u0(x), v0(x) ≥ 0. Let k be admissible and satisfy the previous growth condition. We assume that
the initial data satisfy

(35)
∫

(u0(x) + v0(x))2(1 + |x|2)p dx < C0,
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for some p < (2/α)− (1/2). Let ρε = uε + vε and jε = (uε − vε)/ε. Then,
(i) for every 0 < t < T

(36)
∫
ρ2
ε(x, t) (1 + |x|2)p dx < CT .

(ii) We also have the bound:

(37)
∫ T

0

∫
R
j2ε (x, t)k(uε, vε, x)(1 + |x|2)p dxdt ≤ CT .

(iii) Finally, we get the following estimate for L1-integrability with a weight:

(38)
∫
ρε(x, t) (1 + |x|2)q/2 dx < CT .

for q = p− 1/2 < (2/α)− 1. CT denotes a positive constant that depends on T and the bounds
for k and the initial data mentioned in the statement, but does not depend on ε.

Proof: It is variant of previous results of this paper. We multiply the two equations of System
(2) by uεφ

2 and vεφ
2 respectively, for some smooth test function φ(x) to be precisely chosen

below. Adding the obtained equations and integrating we get

d

dt

∫
R

[
u2
ε + v2

ε

]
φ2dx+ 2

∫
R
kεj

2
εφ

2 dx =
2
ε

∫
R

(u2
ε − v2

ε)φφx dx.

with kε = kε(uε, vε, x). The last term can be written as I = 2
∫
jε(uε+vε)φφx dx = 2

∫
jερεφφx dx.

It can be split into

I ≤
∫

R
kεj

2
εφ

2 dx+
∫

R

ρ2
ε

kε
φ2
x dx.

Using the growth condition we know that ρ2
ε/kε ≤ c ρ2−α

ε , hence the last term is bounded by(∫
R
ρ2
εφ

2 dx

)1−(α/2) (∫
R
φ4/α
x φ2−(4/α) dx

)α/2
,

The last factor is bounded for the choice φ(x) = (1 + |x|2)p/2 with p < (2/α) − (1/2). Writing
X(t) =

∫
R
[
u2
ε(x, t) + v2

ε(x, t)
]
φ2dx, we arrive at the inequality

dX(t)
dt

+ 2
∫

R
kεj

2
εφ

2 dx ≤ CpX1−(α/2).

Disregarding the intermediate term and integrating from 0 to t ∈ (0, T ), we get the boundedness
of X(t) for all t ≤ T with constant CT . This proves parts (i) and (ii).

(iii) Using Hölder’s inequality we may translate the previous square integrability into plain
integrability. Indeed, if f ≥ 0 is a locally integrable real function such that

∫
f(x)2(1+|x|2)p dx <

C, then ∫
f(x)(1 + |x|2)q/2 dx

is bounded if q < p− 1/2. �
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Remarks (1) Whenever α < 2 we can choose some p > 1/2 in assumption (35). The result
applies with a q > 0, and then estimate (38) means uniform smallness of the space integral of
ρε for all |x| ≥ R with R large, and all 0 < t < T , i.e., a uniformly small tail.

(2) On the other hand, similar tail estimates for α ≥ 2 are not to be expected, since they have
been proved to be false for the diffusive limit, equation (6), with D(ρ) = ρ−β, β ≥ 2. Indeed,
solutions of this equation with integrable initial data do not exist, and an initial discontinuity
layer is formed. When we perform the approximation with lifted data and pass to the limit the
mass just disappears at infinity.

(3) In the application it may be true that condition (34) holds only for values 0 ≤ u, v ≤M .
Then the conclusion applies only to bounded solutions with values in that range. In that case
0 ≤ ρε ≤ C and the result holds even for α < 0 (with p and q as in the case α = 0).
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